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Abstract— A methodology for implementing arbitrary foot 
shapes in the passive walking dynamics of biped robots is 
developed. The dynamic model of a walking robot is defined in 
a way that allows shape-dependent foot kinetics to contribute to 
the robot’s dynamics, for all convex foot shapes regardless of 
the exact foot geometry: for the developed method, only the set 
of points describing the foot profile curve is needed. The 
method is mathematically derived and then showcased with an 
application. The open-source pose estimation system OpenPose 
is used to determine the foot profile that enables the rigid-foot 
passive robot to reproduce the ankle trajectory of the actively 
powered, multi-DOF human foot complex. The passive gait of 
the biped robot walking on the specified foot shape is simulated 
and analyzed, and a stable walking cycle is found and 
evaluated. The proposed model enables the study of the effects 
of foot shape on the walking dynamics of biped robots, 
eliminating the necessity of solely using simple, and analytically 
defined geometric shapes as the walking robots’ feet. The 
method can be used for foot shape optimization towards 
achieving any desired walking pattern in walking robots.  

I. INTRODUCTION 

The dynamics of human locomotion are of great interest in 
the robotics community. As a species, our unique mode of 
locomotion presented us with an evolutionary advantage over 
competitors. In recent years, the development of dexterous 
walking robots has accelerated the advances in the area of 
designing locomotion machines. The biped configuration 
presents the added interest of understanding, mimicking, and 
potentially re-imagining our own walking modes.  

The first passive walking machines were introduced by 
McGeer [1]. In his work, he showed that walking is a passive 
mode of the biped dynamics, and he investigated the effects 
of design decisions on the characteristics of gait.  

The simplest walking machines studied included a hip 
mass, rigid legs with inertial elements and point feet [2][3]. 
McGeer’s bipeds included hip joint friction and circular feet 
[1]. Alexander introduced axial leg compliance [4]. Other 
studies have included damping elements along the biped’s 
compliant legs [5][6]. The trend of biomimetic design has 
inspired many researchers to study the effects of mimicking 
various other aspects of the human locomotion system in 
biped robots [7][8][9]. 

Along these lines, it has been proposed that the use of 
circular feet on rigid-legged walkers leads to human-like hip 
trajectories [10]. To date, the circle has been adopted for its 
simplicity as a foot shape in most of the works published on 
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bipedal locomotion. The effect of the circular foot shape on 
biped walkers’ gait has been thoroughly investigated, and it 
has been shown that the passive bipeds’ walking behavior 
changes with the circular foot’s radius [1][6][11].  

However, the human foot is not of circular shape. Instead, 
it consists of several joints in the ankle and in the ball of the 
foot, as well as in the foot’s toes. As such, it is deformable 
and actively actuated during walking. Several humanoid 
robots have mimicked the multi-DOF actuated configuration 
of the human foot in their design [12][13][14]. 

In designing energetically efficient walking systems, as is 
the case for autonomous walking robots or gait-assisting 
devices and prostheses, it is important to minimize the 
energetic input required for locomotion. Towards this goal, 
passive foot designs have been proposed that mimic the 
human rollover geometry more closely than the originally 
proposed circular feet. A rigid flat foot has been studied as a 
means to simulate the double pivot around the heel and ball 
of the human foot during walking [15]. A foot shape 
consisting of two circular arcs at the heel and ball of the foot, 
connected by a linear part in the middle, has also been used 
for the simulation of the double pivot effect [16]. An 
elliptical foot shape has been proposed to model the gradual 
change in human rollover curvature [17].  

The above closed-form foot shape geometries allow the 
simulation of walking for feet that are mathematically 
described by their respective geometries. A more generalized 
approach has been proposed for the modeling of passive gait 
on a more general foot shape [18]; however, the dynamics of 
the passive gait studied there include successive impacts at 
the points defining the foot shape curve, and subsequent 
pivots around each point until the next impact, as the next 
point hits the ground [18]. Such a model is inconsistent with 
the rolling motion of the human foot during walking.  

In this paper, we propose a methodology for the 
simulation of passive gait dynamics for a biped robot model 
walking on feet of arbitrary shape. Any convex curve can be 
selected as a foot shape for the method. The gait produced 
can be evaluated with respect to any criterion and the points 
comprising the foot shape can be rearranged, optimizing the 
foot for the satisfaction of the selected criterion.  

The dynamic modeling of the passive gait on the arbitrary 
feet is presented in Section II. In Section III, a foot shape is 
selected to obtain a human-like ankle trajectory, obtained 
with OpenPose. Section IV evaluates the passive gait 
produced by the biped for the selected foot shape. Finally, 
Section V presents the conclusion of the study. 

II. GAIT MODELING 

The dynamics of passive walkers are greatly influenced by 
their feet’s interaction with the ground: the impact at heel 
strike (HS), the forward progression of the contact’s center of 
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pressure, and finally the stance phase termination at the toe-
off (TO) event, all depend on foot geometry and all 
contribute to the gait kinematics and dynamics.  

For feet of certain geometric shapes, as is the circle or the 
ellipse, known geometric relations allow us to implement the 
foot-ground interaction within the dynamic equations 
governing gait. However, when foot geometry varies from 
explicitly defined shapes, the governing equations of the 
foot-ground interaction have to be expressed in a generalized 
way, to allow the calculation of the ground reaction forces 
and their implementation into the walking dynamics. 

To generalize the gait dynamics description and solution, 
the biped is divided into two separate parts: the body and its 
dynamics model, and the foot and its kinetics model. 

A. Body dynamics model 

The body dynamics model is identical to all walkers 
regardless of foot shape and includes the two legs and their 
shared hip joint, but excludes the feet, see Fig. 1. The 
physical model includes all system inertial elements, i.e. the 
hip mass M as well as the leg masses m, situated at a distance 
l above the ankle positions A1 and A2 of each leg, and the 
axial-dynamics elements, i.e. the springs of elastic coefficient 
k and the dampers of damping coefficient b. 

 
Figure 1. Body dynamics model. 

Three coordinate systems (CS) are defined, see Fig. 1. 
The first, CS-0, is the inertial coordinate system, the second, 
CS-1, is sloped with respect to the first by an angle α, and the 
third, CS-2, is body-fixed on the stance leg at its ankle, point 
A1. The body model of the biped has six degrees of freedom, 
namely the leg angles θ and ψ, the variable leg lengths L1 and 
L2 (both of uncompressed length Lnat), and the stance leg 
ankle A1 position (1xA1, 1yA1) defined in CS-1. These 
constitute the generalized coordinate vector q: 
 1 1 T

A1 A1 1 2[ , , , , , ]x y L L q  
The biped body operates under the gravitational pull g, 

acting on the inertial elements, and is subject to input forces 
acting on points A1 and A2, which constitute the interface 
with the foot part of the model.  

As such, the motion of points A1 and A2, and by extension 
their spatial coordinates (1xA1, 1yA1) and (1xA2, 1yA2) 
respectively, are constrained during the times when their 
corresponding foot is in contact with the ground. This 

interaction is expressed in the form of algebraic constraint 
equations that must be satisfied by the biped’s state.  

The equations of motion are expressed in the form:  


( )     


M q q C(q,q)q K(q) G(q) f 0

c(q) 0

  
 

where M6x6 is the mass matrix, C6x6 is a matrix containing 
centrifugal, Coriolis and damping terms, K6x1 is the elasticity 
vector, G6x1 is the gravity vector and f6x1 is the generalized 
constraint force vector. Finally, c is the vector containing the 
motion’s algebraic constraints. Both f and c differ for the 
single (fSSP, cSSP) and double stance phase (fDSP, cDSP). 

In the single stance phase (SSP), only the stance leg is in 
contact with the ground: Point A1’s coordinates are 
constrained as the stance foot rolls on the ground; then f takes 
the form: 
 SSP SSP SSPf Π (q)λ  
where λSSP is a 2x1 Lagrange multiplier vector, with elements 
equal to the constraint reaction forces in each constraint’s 
direction. ΠSSP is a 6x2 constraint Jacobian matrix that 
transforms the reaction forces λSSP defined in the direction of 
the constraints to generalized forces acting on the elements of 
q. It is defined by: 


T

SSP
SSP

 
   

c
Π

q
 

In (4), cSSP is the SSP 2x1 algebraic constraint vector, 
which depends on q and on foot geometry, as will be seen in 
the next section.  

On the other hand, both A1 and A2 are constrained during 
the double stance phase (DSP): both legs are in rolling 
contact with the ground and their coordinates are constrained. 
This leads to cDSP being a 4x1 vector, resulting in ΠDSP, a 6x4 
constraint Jacobian that multiplies the 4x1 Lagrange 
multiplier vector λDSP, finally resulting in the generalized 
constraint force vector fDSP. The above results from using the 
transcript ‘DSP’ instead of ‘SSP’ in (3) and (4). 

Therefore, in order to solve the gait dynamics for feet of 
arbitrary geometry, constraint vectors c and Jacobians Π in 
both the SSP and DSP must be calculated. 

B. Foot kinetics model 

In the simplest case of circular feet of radius r, with an 
ankle Ar at (1xAr, 1yAr) located at the center of the circle, the 
rolling contact constraints are simply:  
 Ar

1 0r1c x r       
 1

2 Ar 0rc y r    
where Δ1xAr denotes the 1x-displacement of the ankle between 
two instances, measured in CS-1; in a similar manner, Δγ 
expresses the respective change in the leg’s angle, γ. 

Equations (5) and (6) analytically describe the kinematic 
relationship between the ankle DOFs of Ar and the foot angle 
γ. Since the constraint vector is cr = [cr1, cr2]T, Π can be 
expressed analytically through (4), leading to an expression 
for f using (3). In this manner, all elements of (2) are 
expressed analytically in terms of state variables, and the 
dynamical system can be simulated. 

Similar geometric expressions for foot kinetics can lead to 
analytical descriptions of gait dynamics for various other foot 
geometries [17]. However, when aiming to optimize foot 
geometry for a certain criterion, the optimal foot shape might 
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not be of a specifically defined geometry: instead, we might 
only be able to express such an optimal foot shape in a 
numerical manner, as for example a set of points in the plane. 

Let P be a set of points in the form Pi(2xi, 2yi), describing 
the arbitrary foot shape’s profile coordinates, expressed in the 
foot-bound coordinate system (2x, 2y) with its origin at the 
foot’s ankle, A*, as shown in Fig. 2. 

For foot shapes with convex geometry profiles, the foot is 
always tangent to the floor at the point of contact. Therefore, 
for a foot rotated by γ, we can look for point C of the foot that 
will be in contact with the ground, where: 

  
2

2

C

( )
tan

( )

d y

d x
   

 
Figure 2. Foot kinetics model. 

Since the foot’s profile is a convex curve, only one point 
of the foot profile satisfies (7): we identify this as the point of 
contact, 2C(2xC, 2yC). It follows that for a given foot geometry, 
the coordinates of C only depend on γ. The contact point C 
defines the foot profile angle at C, 2φC: 

  
2

2 C
C 2

C

tan
y

x
   

Moreover, the contact point’s distance from point A, 2rC, is: 

    2 22 2 2
C C Cr x y   

Let γHS be the foot angle at the start of the ground contact 
at HS, and let the HS contact point be positioned at 1xHS in 
the CS-1. At a later instance, the foot angle has increased to γ 
and the contact point in CS-1 has moved to 1xC:  


 
 

 
   

HS

2 2
1 1

1 1
C HS

d x d y
x x d

d d






 

   
     
   
   

  

If CHS is the foot point in contact with the floor at HS, and 
C is the contact point for a foot angle γ, Eq. (10) displaces the 
floor contact point by a distance equal to the length of the 
foot profile curve between CHS and C; this is assuming that 
there is no slippage at the foot-floor contact. 

Based on the above, the arbitrary foot’s ankle position in 
CS-1, as it is obtained through the rolling contact for a 
inclination γ (superscript *), is only a function of γ, and it can 
be written as 1A*( 1 *

Ax , 1 *
Ay ), where: 

    1 * 1 2 2 1 *
A C C C Acosx x r x       

    1 * 2 2 1 *
A C C Asiny r y      

Our goal is to find the constraint vector cA imposed on the 
arbitrary foot’s ankle coordinates in CS-1, 1xA and 1yA. These 
coincide with the ankle positions due to the rolling contact, 
1 *

Ax  and 1 *
Ay respectively:  


1 1 *

1 A A
A 1 1 *

2 A A

( )

( )

c x x

c y y




    
       
     

c 0  

It can be seen that cA consists of two distinct parts: a part 
that is a function of the ankle’s DOFs, and a second part that 
is a function of the foot angle γ. 

C. Stance foot constraints 

The biped’s stance foot is in contact with the ground in 
both SSP and DSP. The constraint scenario studied above is 
exactly analogous to the constraints acting on the stance foot, 
where γ = θ: therefore cSSP≡cA=[c1, c2]T. Knowing cSSP, ΠSSP 
can be calculated through (4): 


 

 

1 *
A1

SSP 1 *
A1

1 0 0 0 0

0 1 0 0 0

x

y






 

   
  

  

Π  

We have defined Π as Π(q), therefore all terms in (14) 
should be expressed as a function of the elements of q. 
However, (11) and (12) that are to be differentiated for (14) 
include the contact angle 2φC, defined in (8). The relation of 
2φC to θ=γ is not mathematically straightforward: to calculate 
the term ∂( 2φC )/∂θ, we set: 

  
2

2 2 1C
C C2

C

tan tan
y

x
        

and using the chain rule, we find:  


(15)

2
C 2 22

C
2

C

1 1

1
1

y

x

 
  
  


    

  
 

  

Differentiating κ in (15) and updating (16) results in (17):  


   

2 2 2 2
C C C C

2
C 2 22 2

C C

x y y x

x y

 


       
   

 

 

Similarly, for the derivative of 2rC with respect to θ:  


   

2 2 2 2
(9) C C C C

2
C 2 22 2

C C

x x y y
r

x y

 


      
   

 

  

The terms 2xC, 2yC in (17) and (18) depend only on θ 
through (7). Their partial derivatives with respect to θ can be 
numerically estimated for every meaningful θ, that is θ [-
90º, +90º]. Therefore, all terms of (13) can be differentiated 
with respect to, and ΠSSP in (14) can be expressed 
numerically for every θ. 

D. Numerical considerations for finite foot shapes 

Some foot geometries may not cover the full range of θ’s 
180º span as defined here: for example, the derivative of a 
finite curve’s endpoint is not defined, see point B in Fig. 2. 
At the same time, no point in the foot curve is tangent to the 
ground for a foot inclination θB, as shown in Fig. 3. It is 
intuitive, however, that for a foot angle θB, it is point B that 
will be in contact with the ground, and the foot will be 
pivoting around it until θ obtains a value such that point C 
can be defined through (7). 
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Figure 3. Foot kinetics for large inclination. 

E. Swing foot constraints 

The swing leg meets the ground at HS and is thereafter 
constrained to roll on the ground until TO. The swing foot 
constraints are added to the stance foot constraints to form 
the DSP constraint vector cDSP=[c1, c2, c3, c4]T, where c3 and 
c4 can be found similarly to the process presented in the 
previous section, for γ = -ψ: 

  
 

1 *1
3 A2A1 1 2

1 *1
4 A2A1 1 2

sin sin

cos cos

c xx L L

c yy L L

 
 

     
            



where the minus sign of ψ is due to the opposite definition of 
angles θ and ψ. Similarly to (13), the first set of terms in (19) 
is due to the biped’s DOF configuration, while the second is 
due to the rolling contact. 

 The above result in ΠDSP through (4). The elements of 
ΠDSP are spared here due to space limitations. 

F. Gait phase transitions 

A walking step is defined to start with the beginning of 
the SSP; the corresponding initial conditions are an input to 
the solution. Let the state vector xn at the beginning of the nth 
step be: 
 T T T

n nx = [q ,q ]  
The gait dynamics are solved with the SSP constraints on 

the stance leg, until the HS event, which is defined as the 
moment the swing foot touches the ground, i.e. 4 0c  , see 
(19). To avoid the “scuffing” of the swing foot on the ground 
during its forward motion due to the lack of knees, we also 
impose the swing foot advancement condition, 0  , and 
the swing foot retraction position, 0   in order for HS to 
occur. By definition, cDSP = 0 at HS. Similarly to (20), the 
state vector at HS of the nth step is xn,HS. We name fDSP the 
mapping of xn to xn,HS through the SSP dynamics:  
 ,HS SSP ( )n nfx = x  

After HS, the DSP constraints are imposed on the biped, 
until the TO event. The initial conditions of the DSP are xn,HS. 
During DSP, the ground support is gradually transferred from 
the stance leg to the swing leg, until all of the biped’s weight 
is supported by the swing leg. Therefore, the TO event occurs 
when the normal force of the stance leg’s contact with the 
ground becomes zero. At TO, cSSP=0 both legs are in contact 
with the ground. If xn,TO is the biped state at TO, we call fDSP 
the DSP mapping:  

 , DSP ,( )n TO n HSfx = x  

After TO, the (n+1)th step begins at the next SSP and the 
state is transformed to account for the left-right leg switch: 
the (n+1)th step’s swing leg is the nth step’s stance leg and 
vice versa. After the switch, the state is xn+1. We call a gait 
function, G, the mapping of xn to xn+1:  
 1 ( )n nx = G x  

G.  Solving the gait dynamics  

Both in the SSP and in the DSP, the gait dynamics are of 
the form (2). This system of equations is a differential 
algebraic equation (DAE) system of index 2, as the 
constraints would need to be twice differentiated in order to 
turn the algebraic equations into ordinary differential 
equations (ODE) [22].  

To solve the index 2 system, we differentiate c in (2) once 
with respect to time. Hence, we obtain:  


( )     


M q q C(q,q)q K(q) G(q) f 0

c(q) 0

  


 

At the first instance of the SSP, which is coincident with 
the previous step’s TO event, the SSP constraints are 
satisfied, and cSSP =0. Since in (24) the rate of change c  is 
zero, cSSP will remain zero throughout SSP, and therefore the 
system in (24) is equivalent to the one in (2). The same holds 
for DSP. This leaves us with an index 1 DAE system. 

It is significant to note that further differentiation of the 
constraints in (24) would result in an ODE system that would 
be simpler to solve. However, that system would not be the 
same as (2), as the original constraints would be violated: by 
setting 0c , we would be keeping c  constant, but c  is not 
necessarily zero at the HS and TO events, therefore c would 
change from its initial zero value as time progressed. 

Finally, using the chain rule, we find:  


(4)


 


c
c(q) q Π q

q
    

The DAE system (24) then can be written: 


6x6 6x6 6x 6x1 6x1

6x6 6x6 6x 6x1 6x1
T

x6 x 6 x x1 x1z+1

N

N

N N N N N Nz z

     
            
          

I 0 0 q q

0 M Π q B

Π 0 0 λ 0

 
  

where N=2 for the SSP and N=4 for the DSP, z denotes the zth 
time step of the numerical integration, and B is given by:  
   B(q,q) C(q,q)q K(q) G(q)    

The final form of the system (26) is solvable by DAE 
solvers, such as those in MATLAB. Here we have used 
ode23t for the SSP, and ode15s for the DSP, as the latter is 
more suitable for the stiff impact response of the DSP. 

III. SELECTING THE FOOT SHAPE GEOMETRY 

The generalized model presented in the previous section has 
been validated through comparison tests using the already 
developed models for circular and elliptical foot shapes, for 
which there exist analytically expressed dynamic models 
[6][17]. However, this model is of use when the foot under 
study is of a different shape, or even not analytically 
describable by a known geometric shape. This is the case for 
the human rollover shape. 
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A. Foot shape specifications 

Rollover shapes were proposed as a means to simulate the 
effect of ankle joints on the kinetics and dynamics of bipedal 
walkers [19]. In most cases, circles have been used for their 
simplicity. However, as seen in (6), a circle’s center stays at 
the same height during rollover, whereas the human ankle’s 
trajectory is more complex. Elliptic foot shapes lead to 2-
dimensional ankle trajectories, but only allow for 2 shaping 
parameters, leading to constrains in ankle trajectory. Our goal 
here is to find a rigid foot geometry to be used for the biped, 
that will lead to a human-like ankle trajectory.  

The absence of compliance in the biped’s feet means that 
a biped foot identical to the human foot in its flex state would 
lead to an unnatural ankle trajectory. To find the foot shape 
that fits the purpose, first we must obtain a measurement of a 
human foot’s ankle trajectory during gait. 

B. Ankle trajectory estimation with OpenPose 

OpenPose [20][21] is an open-source pose estimation 
system that detects a set of keypoints on any given image of a 
human body. Here we have used OpenPose on a video 
recording of a step to obtain an estimation of the human 
ankle’s trajectory on the sagittal plane during the stance 
foot’s contact with the ground, see Fig. 4. 

 

 
Figure 4. (a-f) Selected frames from OpenPose output for step video 

sequence. Stance leg in cyan, swing leg in blue. Ankle trajectory in red. 

The ankle trajectory can be roughly approximated by an 
initial descent from HS until the foot is flat on the ground, 
which smoothly transitions to a circular arc of large radius, 
that lifts the ankle from the ground to prepare the foot for TO. 
The circular lift off corresponds to a pivoting motion around 
the ball of the foot. The human ankle is closer to the heel than 
to the ball pivot, hence the larger radius of the second part of 
the trajectory.  

The ankle trajectory estimation using OpenPose is subject 
to detection errors, leading to a noisy trajectory, as can be 
seen in Fig. 4. However, here we are interested in 
approximating the trajectory’s main trends with a smooth 
curve, which is not influenced by the exact ankle position at 
each frame.  

C. Foot shape design 

The next goal is to identify the rigid foot shape that 
results in the specified ankle trajectory when in rolling 
contact with the ground. For this reason, an interactive GUI 
was developed using MATLAB, allowing the speedy 
calculation of the ankle’s trajectory for a foot shape defined 
by a set of points that can be interactively placed on CS-2. 
Eqs. (7) to (12) were used for this calculation.  

The user closes the design loop by empirically placing the 
interactive points in a position that leads to the desired ankle 
trajectory. Finally, these selected points can be used to obtain 
an interpolated set of points that constitute a convex curve, to 
be used as the biped’s foot shape. Fig. 5 (a) shows the final 
foot shape and (b) its ankle’s trajectory, as the foot rolls on 
the ground, which approximates the measured data. Fig. 5 (b) 
distinguishes between a partial and a full foot rotation, as 
only part of the foot’s total 180º rotation leads to the specified 
ankle trajectory. 
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Figure 5. (a) Points defining the foot shape. (b) Biped ankle trajectory for 
full and partial rotation, compared to experimental data from OpenPose. 

When rolling on the ground in a clockwise direction, the 
foot shape of Fig. 5 (a) initially pivots around its heel, as 
there is no contact point (2xC, 2yC) on the foot profile that 
satisfies (7) for large negative γ values. During this time, the 
ankle forms a circular trajectory around the heel pivot, until 
Eq. (7) is first satisfied for an inclination angle γ = -33º. At 
this point, the foot starts rolling on its curved profile, until the 
foot’s toe comes in contact with the ground at γ = 38 º. The 
foot then pivots around the toe point for the remaining range 
of γ angles, again forming a circular trajectory. Since the foot 
shape is not symmetrical around the ankle, the two circular 
trajectories are of different radii, with the toe pivot having a 
larger radius than the heel pivot.  

IV. WALKING ON ARBITRARY FOOT SHAPES 

Up to this point, the methodology of combining foot kinetics 
with the biped dynamics to simulate walking on feet of 
arbitrary shape has been fully described, and a foot geometry 
has been decided for our simulations. In this section, the 
passive gait of the biped on the selected foot geometry is 
studied for its ability to perform stable passive gait as well as 
for the validity of the no-slip assumption made during the 
foot kinetics model’s development. To realize the above, the 
derived foot shape must be incorporated in the biped model. 

A. Incorporating the selected foot shape 

The foot shape that was determined in Section III is made 
up of interpolated points P, as these were defined in Section 
II. Following the methodology described in Section II, we 
construct a lookup table to match all values of foot angle θ in 
the range [-90º, +90º] to the contact point C through Eq. (7). 
A similar lookup table can be constructed for the swing leg 
angle ψ. Consequently, we can use these values to 
numerically calculate the foot shape geometric derivatives 
that are present in (14) and obtain for every configuration q a 
numerical expression of Π, to be used in the DAE system 
(26). In this way, the foot kinetics are incorporated 
numerically in the biped dynamics. 
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B. Investigation of walking capabilities 

The biped studied here has been studied analytically in [6] 
for the simple case of circular feet and in [17] for the case of 
elliptical feet. The model parameters used for the biped 
having the foot shape proposed in Section III are listed in 
Table I, with reference to Fig. 1. 

It has been observed that the foot shape of biped robots 
affects their ability to perform stable walking [17]. Therefore, 
it is important to study the identified foot shape, and to 
investigate its potential to perform a stable passive walk. 

TABLE I.  BIPED PARAMETERS. 

Parameter Explanation Nominal Value 

M Biped body mass 80 [kg] 
Lnat Natural leg length 0.98 [m] 
a Floor slope -3 [°] 
b Damping constant 800 [Ns/m] 
k Elastic constant 25,000 [N/m] 
l Foot mass distance from ankle 0.00 [m] 
m Foot mass 2.8 [kg] 

The search for the biped’s stable walking function 
includes determining the stable fixed points of G in (23); this 
process has been thoroughly presented in [6] and [17], and is 
not be repeated here. A stable gait cycle was identified for the 
biped of Table I with the foot shape of Fig. 5. The biped’s 
convergence towards a stable gait is demonstrated in Fig. 6 
(a), where one leg’s angular DOF phase space is plotted for 
100 consecutive steps of the biped. As can be seen in Fig. 6 
(a), even though the initial conditions of the first step are 
outside the identified fixed-point trajectory, the biped’s 
dynamics quickly converge towards that trajectory. The same 
holds for other initial conditions that lie near different areas 
of the limit cycle, as can be observed in Figs. 6 (b-d): the 
biped’s gait always converges to the same stable trajectory. 

 
 

 
Figure 6. (a) Convergence to stable gait for a biped of the specified foot 
geometry, over 100 consecutive steps. (b-d) Various initial conditions 

outside the fixed-point trajectory are tested. 

C. Foot-ground interface forces 

It has been shown that the foot shape of biped robots 
influences the forces developed in the contact of the feet with 
the ground [17]. Furthermore, one of the assumptions used in 
the walking model developed was that there is no slippage of 

the biped’s foot in its contact with the ground. This 
assumption is only valid if the contact’s friction to normal 
force ratio is smaller than the static friction coefficient of the 
feet with the ground. As a result, the study of the ground 
reaction forces with respect to the foot and ground materials 
is important in a biped having an arbitrary foot profile. 

As previously mentioned, the reaction force vector of a 
set of constraints c is the Lagrange multiplier vector λ. Fig. 7 
shows the ground reaction forces for five consecutive steps of 
the biped, for a foot starting at SSP. The HS and TO events 
for the foot have been marked in the figure. 

 
Figure 7. (a-b) Ground reaction forces and (c) friction coefficient for a foot 

during walking. As FT/FN < μ=0.5, the biped does not slip. 

It can be observed that both the normal force FN and the 
peak friction force FT following the foot’s HS event, are both 
zero during the time the leg is in swing phase, i.e. between 
the TO and HS events. Their absolute ratio, which must be 
smaller than the coefficient of static friction μ, obtains a 
maximum value of about 0.4. Therefore, for μ=0.5 the foot 
will not slip on the ground: this is achievable for many 
material combinations. Therefore, the model’s no-slip 
assumption is valid for the selected foot shape. 

V. CONCLUSION 

In this paper, a methodology was developed that allows the 
incorporation of arbitrary foot shapes in the gait dynamics 
model of a passive bipedal walking robot.  

The mathematical model for the gait was derived under a 
no-slip assumption for any convex foot geometry given as a 
set of 2D points. The model was tested on a custom foot 
shape, optimized so that the biped’s ankles follow the 
trajectory of a human subject’s recorded ankle motion.  

Using the walking model, we were able to check the 
arbitrary-foot biped for its ability to perform stable passive 
gait, as well as for the validity of the no-slip assumption. 
Both these checks should follow any implementation of a 
random foot geometry in biped robots, to assure that the 
model is valid as well as that a real-world biped will be able 
to perform passive walking in an experimental environment.  

The proposed methodology can be an iteration of a design 
loop to enable custom foot shape optimization, to better equip 
biped robots for different tasks, and to increase prosthetic 
devices’ design suitability for personalized walking modes. 
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