
  

Abstract— An optimal leg sequence selection method is 
developed, which maximizes hexapod robot stability, consi-
dering feasible gaits, motion modes, and terrain slope. A novel 
and fast search method is employed to find the most stable leg 
sequence for a given gait; if no such sequence exists, the next 
fastest stable gait is chosen and the most stable leg sequence for 
this gait is selected. The method can be based on any stability 
measure; here the Force-Angle Stability Margin criterion is 
employed that is sensitive to top-heaviness, and inertial and 
external forces. Results show that the developed method senses 
instabilities accurately and selects the best leg sequence for 
maximum stability far faster than exhaustive searches, offering 
distinct advantages when varied external forces are applied. 

I. INTRODUCTION 

Legged robots offer advantages over wheeled ones such as 
discontinuous terrain adaptability and off-road mobility, in 
the expense of speed and power efficiency. Hexapods are 
more stable than wheeled robots [1]-[3], and robots with 
fewer legs. Hexapod studies have dealt with terrain 
adaptability and locomotion stability [4]-[6], aiming at gaits 
and/or leg sequences that compensate for lack of foothold 
positions [8], [6], or for leg failures [5], [9] - [11]. 

A random leg sequence selection for a hexapod robot 
motion results in motion stability characteristics ranging from 
optimally stable motion to instability and failure. Despite the 
importance of leg sequence selection, little has been done in 
sequence optimization, especially in a generic way that 
includes a wide range of gaits, and motion modes, in the 
presence of sloped terrain and external forces. Usually a gait 
and/or leg sequence selection is performed among a small, 
pre-defined group of choices, [12], [13], while no stability 
optimization may be performed, since other criteria may be 
used, such as energy consumption minimization, [7]. When 
stability and leg sequence is studied, only the static stability 
is considered; the effects of dynamic external forces on robot 
stability are usually neglected [14], [15]. The latter is very 
important to underwater legged robots subject to current 
disturbances or walking on variable slope terrains. External 
disturbances are considered in deriving stable leg sequences, 
but no stability optimization is undertaken [16], [23]. 

The authors have introduced a generic method, which 
employs exhaustive search to determine a hexapod stable leg 
sequence for the fastest stable gait, given external conditions, 
such as terrain slope, and disturbances [18]. The method can 
be based on any stability criterion; in [18] the Force-Angle 
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Stability Margin (FASM) was used, considering the effect of 
top-heaviness and of external forces [17]. The underwater 
hexapod HexaTerra [20], see Figure 1, simulated on slopes 
with severe external forces, showed that the method detects 
instabilities accurately, yielding stable leg sequences [18]. 

In this paper, in contrast to the time-consuming 
exhaustive search in [18], a novel search method is presented, 
yielding an optimal, or in few known cases, suboptimal 
solution, significantly faster. The method can be used off-line 
to study hexapod motion stability, e.g. for design purposes, or 
using toe force sensors, on-line to monitor robot stability and 
set the best gait and leg-sequence. Extensive simulations for 
the underwater robot HexaTerra and simulations and 
experimental tests for the Phantom X Hexapod Mark II robot 
[19] illustrated the usefulness of the developed Leg-Sequence 
Selection Algorithm (LSSA), and its enhanced applicability 
due to the intelligent leg-sequence searching method. 

  
Figure 1. The hexapods HexaTerra (left), [20], and Phantom X (right) [19]. 

II. HEXAPOD ROBOT REPRESENTATION 

In this work, hexapod robots with three degrees of freedom 
per leg are studied, such as the underwater HexaTerra or the 
smaller Phantom X, Figure 1. The motion modes for such 
robots include curved motion (rotation and translation) and 
pure translation, with pure rotation just a special case of 
curved motion with zero translation, see Figure 2. 

 
Figure 2. Hexapod motion modes: (a) crab motion, (b) curved motion, and 

special cases: (c) pure rotation, (d) straight motion (slopped terrain). 
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Figure 3 shows a simplified 2D top view of hexapod toe 
workspaces [21]. The leg toes are labelled 1, 2, 3 on the left-
hand side and 4, 5, 6 on the right-hand side. The toes are 
within their workspace, defined by rectangles of dimensions 
P and Q, see Figure 3. Point C denotes the projection of the 
robot center of mass (CM) on the locomotion plane. 

For simplicity and without loss of generality, the 
following assumptions are made: (a) the hexapod is 
symmetric, (b) there is point toe-ground contact, (c) feet do 
not slip, (d) leg masses are lumped into the hexapod body, 
and the CM is at its centroid, (e) hexapod body speed and leg 
average speed during the transfer phase are constant, (f) the 
initial foothold positions are known, (g) toe force sensors are 
available, (h) each leg has a safe workspace, accessible to 
itself only, and (i) the hexapod robot moves statically stable. 

 
Figure 3. Kinematic parameters of a hexapod robot, including the CSP. 

III. LEG-SEQUENCE SELECTION ALGORITHM 

(a) Stability Criteria for Walking Robots. To monitor 
robot stability and avoid tip-over, a criterion must be 
employed. Examples include the static stability criterion 
Stability Margin (SM), and the Force-Angle Stability Margin 
(FASM) criterion, which considers the effects of external 
forces and top heaviness, and is therefore superior to SM 
when such forces are applied [17], [18]. Most criteria also use 
some variation of the Conservative Support Polygon (CSP) 
[22], see Figure 3, in which black circles denote supporting 
leg foothold positions and white circles the currently lifted 
leg previous positions. Using FASM with a hexapod, all 
external forces applied to the body and legs are equal to the 
sum of ground reaction forces, and can be measured using toe 
force sensors. In analytical studies, if ground reactions are not 
provided by the simulated environment, they can be obtained 
using models and assumption (d) is not required. 

(b) Hexapod Gaits. The six legs of a hexapod allow for 
three possible gaits: (a) tripod gait (3 feet in the air, 3 
supporting), (b) tetrapod gait (2 feet in the air, 4 supporting), 
and (c) pentapod gait (1 foot in the air, 5 supporting). The 
tripod gait is the fastest but the least stable, (min CSP), the 
tetrapod is the second fastest and second most stable, and the 
pentapod is the slowest but most stable gait. For each motion 
mode and gait combination, several leg sequences exist, 
resulting in different CSPs with different stability results, 
from the optimally stable case to even unstable cases, 
depending also on the external conditions. Leg sequences are 
shown in brackets, with the leg groups to be lifted separated 
by commas; for example, for a quadruped gait, {1–4, 3–5, 2–

6} means that first legs 1, 4 are lifted and moved, then 3, 5 
etc. To maintain robot static stability during locomotion, a 
decision must be made regarding the optimal sequence for 
lifting and positioning of the robot legs, and for the fastest 
stable gait available that maintains a desired stability margin; 
this is the task of the Leg-Sequence Selection Algorithm 
(LSSA) to be developed. Regarding the motion modes, the 
crab mode is defined by the leg stride displacement d>0 at 
angle φ, Figure 4a, while the curve mode, by d>0 along a 
curve, with orientation change by φ, Figure 4b. 

 
Figure 4. Motion mode parameters for (a) crab motion, (b) curve motion. 

(c) Stability enhancement. To maximize leg 
displacement, and hence speed, d is not preset, but is 
bounded by toe workspace limits. Therefore, d is a function 
of φ and toe workspace. In crab mode, if the desired d and φ 
result in toe workspace violation, d is adjusted to keep the toe 
in its workspace. In curve mode, toe workspace violation 
leads in d, and φ trimming, reducing the motion speed, but 
maintaining the motion direction. 

Lowering the robot CM height h reduces the robot top 
heaviness, while the more apart the legs are, the larger the 
CSP is; both increase the stability margin independent of the 
stability criterion employed. Height h is bounded by hmin, 
depending on the terrain or the task. Note that if φ ≠ 0, 
extending leg positions can lead to partial, or even total loss 
of motion capability. As shown in Figure 5, if the toe starts 
from its workspace center, the available displacement d = s1, 
while if the legs have moved outwards for increased stability, 
d is reduced to s2. Thus, leg extension is used when increased 
stability is required without affecting the desired motion, e.g. 
if φ = 0, otherwise a compromise regarding leg extension 
must be made. Therefore, to enhance robot stability without a 
gait change, first the CM is lowered to hmin. If instability is 
still an issue, initial leg toe positions are extended, possibly 
resulting in reduced speed, but less than that due to a gait 
change (in pentapod gait this is the only option). 

 
Figure 5. Reduction of crab motion capabilities when the initial leg 

positions are extended sideways for increased stability. 

(d) Algorithm development. The LSSA inputs include 
robot parameters, external conditions, such as the terrain, or 
disturbances, and the desired motion mode and gait. Its 
output is the optimal leg sequence for maximum stability, 
which is determined by employing some stability criterion, 
and perhaps a change in the desired gait. Note that although 
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simple criteria like the SM can be used, with LSSA providing 
a corresponding leg sequence solution, stability will not be 
guaranteed if top heaviness and external disturbances are 
non-negligible, since the criterion is not appropriate. In such 
a case, the LSSA would require a criterion like the FASM. 

(i) LSSA main loop. For a specific motion mode, the 
algorithm starts with the desired gait and checks for possible 
leg sequences, by calling the corresponding routine, e.g. 
3podRoutine for a tripod desired gait. If no stable leg 
sequence is returned, then the algorithm choses the next most 
stable gait, i.e. from tripod to tetrapod and/or from tetrapod to 
pentapod, see Figure 6. The LSSA exits either by returning 
the most stable leg sequence for the desired or fastest stable 
gait, or no sequence, if no stable sequence exists for any gait. 

 
Figure 6. The main loop of the LSSA. 

(ii) The 3podRoutine, 4podRoutine and 5podRoutine. For 
the tripod gait, the 3podRoutine calls the 3pod function, see 
Figure 7, to obtain the most stable tripod gait leg sequence. If 
the 3pod function returns no feasible solution, the robot CM 
is lowered once, and the process repeated. If no sequence is 
obtained by lowering the CM, the routine extends the leg 
initial positions once, and calls the 3pod function for a last 
time. If no sequence is obtained, the 3podRoutine ends by 
returning an empty result; in such a case, the next more stable 
gait is tried by the main loop, i.e. the 4podRoutine. Else, the 
leg sequence obtained is used to command the legs. The 4, 
and 5podRoutine have similar structure to the 3podRoutine.  

 
Figure 7. The 3podRoutine. 

 (iii) The 3pod, 4pod and 5pod functions. The 3pod, 4pod 
and 5pod functions are called by the corresponding routine to 
test the available leg sequences and identify the optimal one 
for the chosen gait, using some stability criterion. For each of 
the i CSPs resulting from the groups of legs lifted during the 

jth leg sequence, the corresponding stability values (e.g. βij for 
FASM, [17]) are computed. The overall minimum stability 
value characterizes the sequence (e.g. βj = min(βij)). Negative 
value means unstable leg sequence and is rejected. Selecting 
the maximum stability value among all stable leg sequences 
(e.g. max(βj); max-min criterion), yields the optimal leg 
sequence in stability terms, for the given gait/ motion mode. 

(iv) Smart search. An important question is whether one 
can avoid testing all leg sequences. Depending on external 
conditions, a randomly chosen leg sequence may result in 
reduced stability or even in instability. An exhaustive search 
yields the optimal motion parameters but is rather slow [18]. 
The search can be accelerated significantly using simple 
observations, enabling the use of the LSSA in real time. 

Independent of the stability criterion employed, to 
optimize static stability for any leg sequence it is best to 
maximize each CSP and the intersection of consecutive 
CSPs. The latter is achieved by having CSPs maximizing the 
area around C. Thus, for the tripod gait (3pod function), 
simultaneously lifting legs 1-3-5 or 2-4-6, see Figure 3, 
results in consecutive CSPs with far larger intersection areas 
than any feasible alternative, yielding far more stable 
motions. The 3pod function, thus, checks the stability of only 
two leg sequences: {1–3–5, 2–4–6} and {2–4–6, 1–3–5}. For 
the tetrapod gait (legs lifted in pairs), it is undesirable to 
either lift two consecutive legs, since this diminishes the CSP 
area leading to smaller CSP intersections (see also Figure 8), 
or lift two non-consecutive legs from the same side (e.g. 1-3), 
since the resulting CSP is equal to the tripod gait, wasting the 
tetrapod stability advantage. Thus, only seven possible leg 
pairs to be lifted remain, shown in blue lines in Figure 9a. 
Since each leg is lifted only once in each cycle, the 
combinations of those leg pairs are further reduced to a total 
of 24 possible tetrapod gait leg sequences. The pentapod gait 
has no such limitations, leaving 720 possible leg sequences. 
To avoid an exhaustive search for all possible sequences each 
time the 4pod or 5pod functions are called by the 4pod or 
5pod Routine (similar to 3pod function calls by 3podRoutine 
in Figure 7), a smart search strategy is developed. 

  
Figure 8. Undesired tetrapod gait lifting (a) 1-4 and (b) 4-5, leading to small 

CSPs, with low coverage of the area around C. 

The first two legs to be moved initially are found first, i.e 
the first pair in tetrapod, or the first and second legs in 
pentapod gaits. The remaining combinations are 4 for the 
tetrapod and 24 for the pentapod gait, leading to 83.3% and 
96.7% smaller search respectively, each time the corre-
sponding function is called. If this search yields no stable leg 
sequence, then the 4pod and 5pod functions try the second 
most desirable initial leg pair and so on, until either a stable 
leg sequence is obtained, or all possible leg sequences have 
been checked. Thus, the algorithm is robust in that it always 
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yields a stable leg sequence if at least one exists. Due to the 
way the critical first two legs are chosen, see (v), this solution 
is the optimal in almost all cases (see also Section IV), while 
in a few known cases, not discussed here for brevity, it yields 
at most the third best solution (sub-optimal result). 

(v) The initial two legs. Several possible CSPs exist, see 
Figure 9a, depending on the lifted legs, e.g. lifting leg 4 
leaves the line between legs 1 and 5 (line 1-5) as a CSP edge. 
Lines 1-6, 3-4 and 2-5 cannot be CSP edges, since this 
requires simultaneously lifting two consecutive legs. Thus, 
possible CSP edges for tetrapod and pentapod gaits are those 
shown as red and blue lines in Figure 9b. Lines 1-5, 2-4, 2-6 
and 3-5 (red lines in Figure 9b) define the critical potential 
edges (CPE). If projection point C in Figure 9 moves towards 
some CSP edge, stability is reduced, while the opposite 
happens if it moves away from it. So, if the robot and thus C 
move towards some CPE, the leg which if lifted will make 
this CPE a CSP edge, must be lifted and moved immediately, 
before this CPE becomes more critical. If C moves away 
from a CPE, lifting the legs that will make it a CSP edge can 
be delayed. For example, in Figure 9b if C moves towards 
CPE 2-4 and away from CPE 3-5, then leg 1 that, when 
lifted, makes CPE 2-4 a CSP edge, must be lifted before CPE 
2-4 becomes more critical, while leg 6 that exposes CPE 3-5 
when lifted, can be delayed letting 3-5 become less critical. 

 
Figure 9. (a) possible leg pairs in tetrapod gait (blue lines) and resulting 
CSPs (blue and black lines) and (b) most critical edges of the CSPs (red 

lines) in tetrapod and pentapod gaits and point C motion regions. 

As a search strategy first step, the direction of the robot 
motion and of point C is checked against eight regions and 
bounding CPEs, see Figure 9b. Weights w4 < w3 < 0 < w2 < 
w1 are attributed to the legs defining each CPE. For example, 
robot motion towards region 1 in Figure 9b suggests that C is 
moving towards CPE 2-4, and the highest weight w1 is 
attributed to legs 2 and 4, less directly towards CPE 1-5, and 
w2 is attributed to legs 1 and 5, away from CPE 3-5, and the 
lowest, negative weight w4 is attributed to legs 3 and 5, and 
less directly away from CPE 2-6, with w3 attributed to legs 2 
and 6. Legs common in two CPEs are attributed the algebraic 
sum of the corresponding weighting points (e.g. leg 2 is 
attributed w1 + w3). Point C in Figure 9 is obtained with the 
robot weight as the only external force on even terrain. In 
general, point C can be anywhere inside the blue rectangle of 
Figure 9b, and then the motion direction regions are twelve 
instead of eight (not shown here for brevity and simplicity).  

Note that the cases in which the LSSA yields at most the 
third-best sequence depend on the direction of the robot 
motion, the position of C in the CPE-defined regions, and on 
what stage of the leg sequence C changes region, which 

cannot be determined a priory in some cases, resulting in 
three possible solutions. The optimal sequence can be 
obtained in these cases too, by checking all three best initial 
leg motion cases. For pentapod gait, this leads to 72 sequence 
searches instead of 24. Although 72 is still far less than the 
exhaustive search of 720 sequences, all three sequences are 
very close; therefore not much is gained with the 72 searches. 

The search strategy outlined above requires computing 
the location of point C.  When taking into account external 
disturbances (e.g. when using the FASM), the projection 
yielding point C is performed along the line of the resultant 
external force acting on the robot CM. The external torques 
effect is also considered, by including an equivalent force, 
using an approach similar to the one used by the FASM [17]. 

Figure 10 shows the LSSA flowchart (FASM), with the 
smart leg sequence search omitted for presentation simplicity.  

 
Figure 10. The LSSA flowchart. 

The LSSA can be used either prior to a simulated robot 
motion with preset external conditions, or during robot 
motion with measured forces, tracking the optimal leg 
sequence for a commanded motion mode and gait (see also 
Section IV). In both cases, if no stable leg sequence exists for 
the desired gait, the LSSA yields the optimal leg sequence for 
the fastest possible stable gait. Moreover, the LSSA can be 
called at any time to re-calculate the optimal leg sequence 
after the motion of each leg, or pair/ triplet of legs, 
interrupting the leg sequence if necessary, and quickly 
adjusting the remaining legs motion accordingly, searching 
only the legs that have not yet been moved. The importance 
of the smart search and its very low computational time (see 
Section IV), becomes even more apparent in such cases. 

IV. RESULTS 

(a) Simulations. We study the LSSA validity and the novel 
smart search efficiency, initially by simulations. Two 
hexapod robots are simulated; the underwater hexapod 
HexaTerra (Figure 1 left, [20]) and the smaller Phantom X 
robot (Figure 1 right, [19]), with properties shown in Table I.  

Table I. Dimensions and total mass of the two hexapods (see Figure 2). 

P (m) Q (m) W (m) U (m) h (m) hmin (m) M (kg) 

HexaTerra 

1 1 0.433 1.2 0.9 0.7 660 

Phantom X 

0.12 0.024 0.144 0.12 0.12 0.09 2.055 
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The LSSA employs the smart search method and the FASM 
stability criterion, while, for safety reasons, it is assumed 
that accepted stable leg sequences are the ones with FASM 
value β ≥ βm where βm provides a safety margin, defined as 
10% of the β obtained for the robot on even terrain and with 
all six legs on the ground, with the normal leg pose. As the β 
is not normalized to size, βm is equal to 54 for the Hexaterra 
and 0.17 for the Phantom X. In simulations, external forces 
are estimated using models. To compare simulation results 
to experiments, for the Phantom X, it is assumed that only its 
weight acts as an external force, (see Section IV (b)).  

Without loss of generality, for the underwater HexaTerra 
simulations buoyancy force A is assumed to be 25% of the 
total robot weight W and both are applied to the robot CM. 
Also, HexaTerra is equipped with a trenching tool of constant 
maximum trenching force ft (see Table II, and Figure 11b), 
and moment ||nt|| = ||ft||*h. A water drag force Rw acts on the 
HexaTerra at θ = 180° (i.e. water current from back to front, 
see Figure 11a), and is modeled as 

 
   
Rw = 0.5⋅CDρArur _max ur _max  (1) 

where CD is the drag coefficient, ρ is the seawater density, 
ur_max is the maximum relative speed between robot and 
seawater, and Ar is the robot area normal to ur_max. Note that 

 
  
ur _max = uwv _max − umax  (2) 

where umax is the maximum robot speed, and uwv_max is the 
maximum sea current speed. External force parameters are 
shown in Table II, and Figure 11. The smart search weights 
were chosen empirically as w1=2, w2=1, w3=-0.5 and w4=-2. 
Different weight sets may result in a solution loss, yielding a 
less optimal one, but not in a total solution loss, if one exists. 

Table II. HexaTerra external forces calculation parameters during motion. 

ft CD ρ umax uwv_max Rw 

800 N 0.8 1025 kg/m3 0.05 m/s 8/5 kn 68.91 N 

 
Figure 11. External forces acting on the HexaTerra robot. 

Simulations were run for both robots, climbing up a slope 
that is getting steeper, gradually for the HexaTerra, Figure 
12a, and continuously for Phantom X, Figure 13a. 

The terrain provides all required friction, i.e. there is no 
slip. In both cases, external conditions are φ = δ2 = 0°, i.e. a 
straight up motion with step trimmed to 0.5m for HexaTerra 
and 0.04m for Phantom X. Initial inclination was set at δ1 = 
5° for HexaTerra and δ1 = 0º for Phantom X. In both cases, 
the robots start from nominal CM height and leg extension, 
adapting to the slope increasing inclination accordingly, see 
Figure 12b, c and d, and Figure 13b, c and d, respectively. 

The requested gait for both cases is the tripod one with 
nominal CM position and leg extension. The response of the 
LSSA to this request and the resulting FASM values β are 
shown in Figure 12e and Figure 13e, for the HexaTerra and 

Phantom X simulations, respectively. As expected, as the 
slope becomes steeper, the LSSA resorts to increasingly more 
stable, but also slower gaits, in both cases. For the Phantom 
X case, at slope angle δ1 = 25° the LSSA provides the stable 
leg sequence {1, 4, 3, 2, 6, 5} in the pentapod gait, with β = 
0.466. If the inclination keeps on rising, then the β keeps on 
dropping, until the inclination becomes δ1 = 35º, in which 
case no stable gait / leg sequence can be found. 

 
Figure 12. HexaTerra motion on a slope with increasing inclination. (a) 
Terrain inclination. Leg placement extensions: (b) outward, along y-axis 

and (d) backward, along the x-axis. (c) Robot CM distance from the ground. 
(e) Chosen gaits and leg sequences, with corresponding FASM values. 

 
Figure 13. Phantom X motion on a slope with increasing inclination. (a) 
Terrain inclination. Leg placement extensions: (b) outward, along y-axis 

and (d) backward, along the x-axis. (c) Robot CM distance from the ground. 
(e) Chosen gaits and leg sequences, with corresponding FASM values. 

For both robots, the effect of the extension of the initial 
leg placement is quite significant on stability. As a result, the 
configuration with lowered CM and extended initial leg 
positions, and with tripod gait, is more stable than the one 
with the initial robot pose and tetrapod gait. Thus, the latter 
does not appear during the slope climbing motion. The same 
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is observed between tetrapod and pentapod gaits. 
Nevertheless, even with enhanced stability initial pose (leg 
placement and lowered CM), there is a limit to which slope 
inclination each robot can climb with tripod gait. Turning to 
tetrapod (and then pentapod) gait pushes this limit further on. 
Moreover, there is also a limit to how much the initial leg 
position can be extended and the robot CM can be lowered 
(and thus how much these techniques can affect walking 
stability), depending not only on the specific robot geometric 
characteristics, but also on the environment (e.g. obstacles 
over which the walking robot has to pass), while, the change 
from tripod to tetrapod and then pentapod gait, is always a 
stability enhancement option. However, even by changing to 
a more stable gait, unstable leg sequences were observed in 
all cases, (e.g. the unstable pentapod sequence {3,6,2,5,1,4} 
at 34° inclination in the Phantom X simulations). These 
observations demonstrate the importance of searching for the 
most stable leg sequence (as opposed to randomly choosing a 
leg sequence) for a given gait and, failing that, for the fastest, 
stable gait/leg sequence combination. 

In terms of the computational time, the LSSA yielded the 
above mentioned three tripod gait solutions in just about 
11ms, for the HexaTerra simulations and in about 5ms, for 
the Phantom X simulations. For the tetrapod and pentapod 
gaits, LSSA computation times are shown in Table III, with 
the tripod initial gait and the initial robot pose. As shown in 
Table III, both the LSSA and the exhaustive search resulted 
with the same leg sequences and same stability margin, a fact 
also observed for all cases shown in Figure 12 and Figure 13. 
The table shows that the smart search described in Section III 
vastly improves the LSSA computational time by 43% to 
72%, without missing stable leg sequences, allowing LSSA 
to be used on-the-fly gait/leg sequence selection. These times 
were obtained with LSSA running on a on an i7 PC, with 
compiled C-code called by MATLAB. 

Table III. Computational time of the LSSA for both simulation test cases, 

using the smart and the exhaustive search. 

 HexaTerra Phantom X 

Ground inclination 25° 35° 13° 20° 30° 

Resulting gait 4pod 5pod 4pod 4pod 5pod 

Initially required gait 3pod 3pod 3pod 3pod 3pod 

LSSA-FASM 
(smart search) 

Comp. time  16 (ms) 53 (ms) 8 (ms) 13 (ms) 16 (ms) 
Stability (β) 127.9 603.9 0.1913 0.2947 0.2951 

LSSA-FASM 
(exhaust. search) 

Comp. time 35 (ms) 170 (ms) 14 (ms) 26 (ms) 58 (ms) 
Stability (β) 127.9 603.9 0.1913 0.2947 0.2951 

Computational efficiency 
improvement 

54.3% 68.8% 42.9% 50% 72.4% 

 
(b) Experiments. To demonstrate the validity of the 

LSSA for a real robot walking on dynamically changing 
environment, the Phantom X hexapod was used in several 
experiments, climbing a ramp with increasing inclination. 
The first test run is identical to the aforementioned Phantom 
X hexapod simulation. Since the robot is not yet equiped with 
toe force sensors, the external forces effect (i.e. only the 
effect of gravity in this case) is calculated based on the 
known robot properties (see Table I) and the measured ramp 
inclination. This is fed as input to the LSSA running on an 
external i7 PC, which then provides the optimal leg sequence, 
and transmits it to the climbing robot using an XBee. The 

compiled C code also includes, except the LSSA itself, the 
conversion of the LSSA output to the corresponding leg 
motor angle commands, so as not to burden the hexapod 
onboard Arduino with this conversion. 

Due to height limitations, the ramp inclination does not 
reach the simulated 25º, but only 13.4º, starting from an 
initial inclination of 1.4°. Nevertheless, this is enough to 
observe the change from tripod with initial robot pose, to 
tripod with lowered CM, then to tripod with lowered CM and 
extended leg placement, and finally to tetrapod with non-
extended leg placement but with lowered CM, just as was the 
case in the simulations (see also produced video, and 
experiment snapshot in Figure 1, right). The result is that the 
LSSA successfully provides the robot with the fastest stable 
gait/leg sequence combination, even though the initially 
required gait is tripod at all times. At the end of the motion, at 
inclination δ1 = 13.4º, the robot is commanded on purpose to 
move with tripod gait and the initial robot pose, violating the 
LSSA output. As expected, PhantomX tips over (see attached 
video), demonstrating the leg sequence selection importance. 

Additional experiments included climbing up the ramp 
with non-zero δ2 angle, see also Figure 2d, and going down 
the ramp, all of which discussed here briefly for brevity. Note 
that, violating the LSSA output (e.g. keeping on requesting 
tripod gait/leg sequence when the LSSA predicts instability) 
may not automatically result in actual instability, depending 
on how much the LSSA output is violated with the requested 
motion, due to the introduced safety margin (0.17 for 
Phantom X). Nevertheless, when the ramp keeps on lifting, 
the robot tips over in every case, soon after the LSSA first 
prediction. This demonstrates the use of the safety margin, in 
recognizing imminent instability on time. 

V. CONCLUSION 

An optimal leg sequence selection method for hexapod 
robots in terms of robot stability and for a combination of 
various gaits, motion modes and sloped terrains, called the 
LSSA, was developed and analytically presented. The LSSA 
can be based on any measure of stability; in this work the 
FASM was employed that is sensitive to dynamically 
changing environment and disturbances. The LSSA finds a 
stable leg sequence for the required motion mode and gait; if 
no such stable case exists, the method reconfigures the robot 
pose in favor of stability and tries again; if even that fails to 
provide a stable leg sequence, the gait is changed to the 
fastest stable one and a stable leg sequence for this gait is 
obtained. The LSSA searches for stable leg sequences in a 
robust, intelligent way, resulting in faster and optimal  
results, except in a few known cases, and never fails to 
provide a stable leg sequence, if one exists. Simulations of 
the underwater hexapod HexaTerra moving on slopes with 
severe external forces, as well as both simulations and 
experiments with the actual Phantom X hexapod, show that 
the developed LSSA with the FASM criterion and the 
introduced smart search, quickly and accurately predicts 
instabilities. The LSSA has significant practical value, since 
it can be used off-line, to study robot motion stability or for 
design purposes, and in real time in selecting gaits and leg 
sequences, maintaining and monitoring stability. 
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