
  

  

Abstract. The parameter estimation of space manipulator 
systems on orbit is studied, whose manipulators are subject to 
joint flexibilities. To improve path planning and tracking capa-
bilities, advanced control strategies that benefit from the 
knowledge of system parameters are required. These parame-
ters include the system inertial parameters as well as the stiff-
ness and damping parameters, which describe joint flexibilities. 
During operation some of these parameters may change or be 
unknown. Estimation methods based on the equations of motion 
are sensitive to noise, while methods based on the angular mo-
mentum conservation, while they are tolerant to noise, they can-
not estimate the parameters that describe joint flexibilities. A 
parameter estimation method, based on the energy balance, 
applied during the motion of a space flexible-joint manipulator 
system in the free-floating mode, is developed. The method is 
tolerant to noise and can reconstruct the system full dynamics. It 
is shown that the parameters estimated by the proposed method 
can describe the system dynamics fully. The application of the 
developed method is valid for spatial systems; it is illustrated by 
a planar 7 degrees of freedom (DoF) example system. 

I. INTRODUCTION 

On-Orbit Servicing (OOS) will require lightweight and dex-
terous space robotics systems, carrying manipulators subject 
to joint flexibilities, Fig. 1. Considering flexibilities only at 
the joint level is reasonable for systems with short links, 
such as the free-floating/free-flying space manipulator sys-
tems under study, or for flown systems in past and current 
OOS missions. Examples of OOS missions are the Japanese 
ETS-VII [1] and the US Orbital Express [2], and more re-
cently the missions DEOS [3] and e.Deorbit [4]. Such flexi-
bilities may result in poor performance when manipulating 
large payloads, and in some cases even in instabilities, if 
neglected in the control design. Advanced control strategies 
will be required, which will need knowledge of system pa-
rameters. 

Several studies exist for the parameter estimation of rigid-
joint free-floating space manipulator systems (FFSMS) based 
on the equations of motion, or on the angular momentum 
conservation. The parameter identification of a FFSMS with-
out flexibilities and equipped with torque sensors was studied 
in [5]. Exploiting the conservation of the angular momentum 
of a FFSMS, an estimation method was developed where the 
 
* Support by the H2020 Projects EROSS funded by European Commission 
under Grant Agreement #821904 is acknowledged. 
  Kostas Nanos & Evangelos Papadopoulos are with the School of Mechani-
cal Engineering, National Technical University of Athens, Greece (ph: +30-
210-772-1440; e-mail:nanos.kostas@gmail.com, egpapado@central.ntua.gr. 

parameters to be identified were combinations of rigid space-
craft, manipulator and payload parameters; once available, 
they were enough to reconstruct the system full dynamics as 
required in model-based control laws, [6].  

In [7], the effects of flexible appendages and liquid fuel 
sloshing on the rigid body parameter identification were ad-
dressed. To model the liquid fuel sloshing effect, a mechani-
cal pendulum was considered. It was shown that in both cases 
significant influences to the identification model appear; an 
improvement can be achieved by appropriate optimization of 
the exciting trajectories. To estimate the joint flexibilities of a 
space manipulator, the development of a simplified coplanar 
model of the flexible joint was proposed [8]. The joint stiff-
nesses and damping were found by applying an impact force 
on the system and studying the resulting responses. 
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Fig. 1. A spatial FFSMS with flexible joints. 

To generate exciting trajectories for the identification of 
the inertial parameters of a rigid joint fixed-base manipulator, 
the energy model was proposed, since the energy is a func-
tion of joint angles and rates, and does not require calculation 
or measurement of accelerations [9]. In [10], the authors pro-
pose the Power Identification Model (PIM), since derivation 
is much simpler than the derivation of the Inverse Dynamic 
Identification Model (IDIM). However, it was shown that the 
PIM is much more sensitive to the choice of the exciting tra-
jectories than the IDIM. More recently, a method for estimat-
ing inertial parameters of a free-flying space manipulator 
after grasping an object has been proposed [11]. To optimize 
the exciting trajectory, an approach based on the energy bal-
ance between the actuation work and the rate of change of 
kinetic energy was introduced to yield the number of Fourier 
series harmonics used to represent the executed trajectory. 

In this paper, the estimation of the full dynamics of a 
FFSMS with flexible joints is studied. It is shown that the 
methods based on the angular momentum conservation, 
which are tolerant to sensor noise, cannot estimate joint flex-
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ibility parameters. A new parameter estimation method, 
based on the energy balance during the motion of a flexible-
joint FFSMS, is proposed. The method estimates all system 
parameters including those that describe the joint flexibilities, 
requiring only measurements of joint angles and rates, space-
craft attitude and angular velocity, and joint torques. In con-
trast to the methods based on the equations of motion, the 
developed method is insensitive to sensor noise, since no 
information about spacecraft and joint accelerations, is re-
quired. The application of the proposed method is valid for 
spatial systems. It is shown that the parameters estimated by 
the proposed method can describe the system full dynamics 
sufficiently. The method is illustrated by a planar 7 degrees 
of freedom (DoF) flexible-joint FFSMS. 

II. DYNAMICS OF FLEXIBLE-JOINT FFSMS  
Space manipulator systems consist of one or more robotic 
manipulators, which are mounted on a satellite base 
equipped with thrusters and reaction wheels. Such systems 
are subject to manipulator joint flexibilities. The equations 
of motion of a flexible-joint FFSMS with zero angular mo-
mentum have been presented analytically in [12]. In this 
section, we develop briefly the angular momentum conserva-
tion and the equations of motion of a flexible-joint FFSMS 
with non-zero angular momentum. 

The DoFs of the manipulator of a flexible-joint FFSMS 
are twice the number of control inputs, since due to the joint 
flexibilities the motion of both the link and gear motor angu-
lar position q  and θm , need to be considered, see Fig. 2. 
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Fig. 2. The flexible joint model. 

To build the model, the following assumptions are em-
ployed. First, joint deflections are considered small enough 
so that they can be described by a torsion spring of constant 
stiffness k , and a damping element of constant damping b . 
The joint deflections are considered to be lumped after the 
gearboxes, while the actuator rotors are modeled as rigid bod-
ies, which have their Center of Mass (CoM) on the rotation 
axis. The motor stators are considered as mounted on manip-
ulator links. Moreover, the motor of joint i is mounted on link 
i-1 and moves link i with its rotation axis aligned with the i-th 
joint. Finally, the stiffness of the gearbox is included in the 
spring/damper model and any backlash in the gears can con-
sidered negligible (e.g. using spring-loaded gears or harmonic 
drives). Under the above assumptions, the angular momen-
tum conservation and the equations of motion of a flexible-
joint FFSMS are derived.  

A. Angular Momentum Conservation 
In the free-floating mode, the CoM of a space manipulator 
system does not accelerate, and the system linear and angu-
lar momenta are constant. Considering zero initial linear 
momentum, the system CoM remains fixed in inertial space.  

Then, the angular momentum of a N  link flexible-joint 
FFSMS with respect to its CoM, hCM , expressed in the iner-
tial frame, is given by [12] 

 hCM=R0 (ε,n)(
0D* 0ω 0+

0DΘ
!Θ)   (1) 

where 0ω 0  is the spacecraft angular velocity with respect to 
the spacecraft 0th frame, and R0 (ε,n)  is the rotation matrix 
between the spacecraft and the inertial frame expressed as a 
function of the spacecraft Euler parameters ε,n . The matri-
ces 0D*  and 0DΘ  are inertia-type matrices of appropriate 
dimensions, given in [12], and 

 Θ= q
θm

⎡
⎣⎢

⎤
⎦⎥

  (2) 

where q  contains the manipulator joint angles 

 q= q1 q2 ! qN⎡⎣ ⎤⎦
T

  (3) 

and θm  is the angular position after the gearboxes 

 θm= θm1
θm2
! θmN

⎡⎣ ⎤⎦
T

  (4) 

B. Equations of Motion of Flexible Joint FFSMS 
The equations of motion of the FFSMS are derived using the 
Lagrangian approach. In the case of flexible-joint FFSMS, 
only the potential energy due to joint flexibility is considered 
and given by 

 Tflex (Θ)=
1
2
(θm−q)

TK(θm−q)   (5) 

since the potential energy due to gravity can be assumed to 
be zero for systems on orbit. A dissipation term is also con-
sidered and given by: 

 Pdiss ( !Θ)=
1
2
( !θm− !q)

TB( !θm− !q)   (6) 

where 
 K=diag(k1,k2,...,kN )   (7) 

 B=diag(b1,b2,...,bN )   (8) 

The equations of motion of flexible-joint FFSMS are [12] 
 0D* 0 !ω 0+

0DΘ
!!Θ+C1

*=0   (9) 

 

0DΘ
T 0 !ω 0+

0DΘΘ
!!Θ+C2

*

+ -K
K

⎡
⎣⎢

⎤
⎦⎥
(θm−q)+

-B
B

⎡
⎣⎢

⎤
⎦⎥
( !θm− !q)=Q

  (10) 

where C1
* , C2

*  are column vectors containing the nonlinear 
terms of centrifugal and Coriolis forces and 0DΘΘ  is an iner-
tia type matrix, [12]. 

The vector of generalized forces Q  is  

 Q= 0N×1
n⋅τ

⎡
⎣⎢

⎤
⎦⎥

  (11) 
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where n  is an N×N  diagonal matrix of the reduction ratios  
 n=diag(n1,n2,...,nN )   (12) 

and τ  is the column vector of the motor torques,  

 τ= τ1 τ 2 ! τ N⎡⎣ ⎤⎦
T

  (13) 

where τ i  is the torque applied on the rotor of joint i . 
The above equations of motion are valid for FFSMS re-

gardless of whether the system angular momentum is zero or 
not. This form of equations is suitable for system estimation, 
since one can exploit the property of linearity of the system 
model with respect to a suitable set of parameters [6]. 

However, when designing control systems for flexible-
joint FFSMS, it is preferable to describe the system dynamics 
by the 2N  reduced equations of motion. Unlike the case of 
equations of motion, the reduced equations of motion also 
require the use of the angular momentum conservation. The 
effect of non-zero angular momentum, for rigid-joint 
FFSMS, has been studied in [13]. Considering a similar pro-
cedure followed in [13], one can finally obtain the following 
reduced equations of motion in the presence of nonzero angu-
lar momentum: 

 H(Θ) !!Θ+C*(ε,n,Θ, !Θ,hCM ) !Θ+gh(ε,n,Θ,hCM )=Q   (14) 

where H(Θ)  is an 2N×2N  positive definite symmetric 
matrix, called the reduced system inertia matrix, equal to 

 H(Θ)= 0DΘΘ−
0DΘ

T 0D*−1 0DΘ   (15) 

where the 2N×2N  matrix C*(ε,n,Θ, !Θ,hCM )  is a function 
of the system angular momentum and contains the nonlinear 
Coriolis and centrifugal terms, 

 C*(ε,n,Θ, !Θ,hCM )=C(Θ, !Θ)+Ch(ε,n,Θ,hCM )   (16) 

The 2N ×2N  matrix C(Θ, !Θ)  contains the non-linear Corio-
lis and centrifugal terms for a spatial FFSMS with zero an-
gular momentum, and the 2N ×2N  matrix Ch  is an addi-
tional term caused by the presence of the system non-zero 
angular momentum and given by 

Ch=
∂( 0DΘ

T 0D*−1R0
ThCM )

∂Θ
−∂(hCM

T R0
0D*−1 0DΘ )
∂Θ

  (17) 

The 2N×1  vector gh is caused by the presence of angular 
momentum, too. It does not vanish for zero link and motor 
rates !q, !θm  and is given by 

gh=
1
2
∂(hCM

T R0
0D*−1R0

T )
∂Θ

hCM
− 0DΘ

T 0D*−1[ 0D*−1(R0
ThCM−

0DΘ
!Θ)]×R0

ThCM
  (18) 

where the symbol (⋅)× , called cross-product operator, de-
notes the construction of a skew-symmetric matrix from the 
elements of the vector (⋅) . 

III. PARAMETER ESTIMATION USING THE ANGULAR 
MOMENTUM CONSERVATION OR THE EQS. OF MOTION 

In this section, the estimation methods based on the angular 
momentum conservation (AMC method) and on the dynamic 
equations of motion (DE method) are presented briefly. 

A. AMC Method 
The angular momentum conservation for a flexible-joint 
FFSMS is given by (1). Similar to the case of rigid-joint 
FFSMS, this equation can be expressed linearly with respect 
to a vector of the parameters πh  to be estimated 
 hCM=Yh( !q,q, !θm,

0ω 0 ,ε,η)πh   (19) 

where the regressor matrix Yh  does not require acceleration 
measurements. 

However, although with this method the inertial parame-
ters can be identified, the dynamics of the flexible joints de-
scribed by the torsional springs and damping elements, can-
not be identified. This is because, the vector of the estimated 
parameters πh  does not contain the stiffness ki  and the 
damping bi  of joint i, required to describe the joint i flexibil-
ity, and therefore the method cannot estimate the full dynam-
ics of flexible-joint FFSMS. 

B. DE Method 
In the case of flexible-joint FFSMS, the reduced equations 
of motion, (14), cannot be written in a linear form with re-
spect to the inertial parameters. The non-linearity is caused 
by the presence of the term 0D*−1  in H(Θ) , see (15). How-
ever, the equations of motion, given by Eqs. (9) - (10), can 
be expressed linearly with respect to the vector of the pa-
rameters π τ  to be estimated 

 
0= 0D* 0 !ω 0+

0DΘ
!!Θ+C1

*

=Y1(!!q, !q,q,!!θm, !θm,θm,
0 !ω 0 ,

0ω 0 )π τ

  (20) 

 
Q= 0DΘ

T 0 !ω 0+
0DΘΘ

!!Θ+C2
*+K*(θm−q)+B

*( !θm− !q)
=Y2 (!!q, !q,q,!!θm, !θm,θm,

0 !ω 0 ,
0ω 0 )π τ

 (21) 

where 

 K*= -K
K

⎡
⎣⎢

⎤
⎦⎥

 (22) 

 B*= -B
B

⎡
⎣⎢

⎤
⎦⎥

 (23) 

Eqs. (20) and (21) can be combined to yield 

 Q*=[ 0T QT ]T =Yτ (!!q, !q,q,!!θm, !θm,θm,
0 !ω 0 ,

0ω 0 )π τ   (24) 

where the regressor matrix is given by 

 Yτ= [Y1
T Y2

T ]T  (25) 

If N  measurements of joint torques τ , link and motor po-
sitions q,θm , link and motor velocities !q, !θm , link and motor 
accelerations !!q,!!θm  and spacecraft angular velocity 0ω 0  and 
acceleration 0 !ω 0  can be obtained at time instants t1,t2,...,tN  
along an appropriate trajectory, one obtains the following 
system of equations 

 τ̂*=

τ*(t1)
τ*(t2 )
!

τ*(tN )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

Yτ (t1)
Yτ (t2 )
!

Yτ (tN )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

π τ=Ŷτπ τ  (26) 
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To solve (26) for π τ , the regressor matrix Ŷτ  must be of 
full rank. To avoid ill-conditioning of matrix Ŷτ , the number 
of time instants should be large enough. In this case, the sys-
tem of (26) is over-determined and solving it by a least-
squares technique leads to the solution in the form, 

 π τ =(Ŷτ
T Ŷτ )

−1Ŷτ
T τ̂*   (27) 

where (Ŷτ
T Ŷτ )

−1Ŷτ
T  is the left pseudo-inverse matrix of Ŷτ . 

Note that the estimation method based on the equations of 
motion is sensitive to measurement noise since it requires 
measurements of the spacecraft angular acceleration 0 !ω 0  and 
the link and motor accelerations !!q  and !!θm , which all con-
tain substantial noise. 

Here, it is assumed that the spacecraft angular velocity and 
acceleration are measured by an Inertial Measurement Unit 
(IMU). If 0ω 0  is the true angular velocity and 0 !ω 0  is the 
corresponding measurement of the angular velocity, then the 
measurements can be modeled by, [14] 
 0 !ω 0 =

0ω 0 +bω +nω   (28) 

 !bω =nbω   (29) 

where the term bω  is the gyroscope bias, considered to be a 
“Brownian” motion process, while the terms nω  and nbω  
represent white Gaussian noise with zero mean and standard 
deviations σω  and σ bω , respectively. 

Considering that encoders are available on the links and 
the brushless DC motors, the output of the encoders includes 
noise 
 !q=q+nq   (30) 

 !θm=θm+nθm
  (31) 

where q and θm  are the actual link and motor angles and !q  
and !θm  the corresponding measurements; the terms nq  and 
nθm

represent Gaussian noise with zero mean and standard 
deviation σ pos . 

If q  is the precision of encoder position and ΔT  is the 
sample period, then the encoder noise, velocity and accelera-
tion variances can be given by [15] 

 

σ pos
2 =q

2

12

σ vel
2 = 2

ΔT 2
q2

12

σ accel
2 = 4

ΔT 4
q2

12

  (32) 

respectively. 

IV. PARAMETER ESTIMATION USING THE ENERGY BALANCE 
In the previous section, we concluded that both DE and 
AMC methods are not appropriate for estimating the pa-
rameters of flexible-joint FFSMS. The former is sensitive to 
noise measurements since it requires the measurements of 
the spacecraft angular acceleration 0 !ω 0  and both the link 
and gear reduction angular acceleration !!q  and !!θm , respec-
tively. The latter, although it does not require accelerations, 

it can estimate only the system inertial parameters but not 
the ones that describe the joint flexibility. 

In this section, an estimation method based on the system 
energy balance (EB method) is developed. This method can 
be applied to the parameter estimation of flexible-joint 
FFSMS, since as it will be shown, it tolerates measurement 
noise and can estimate all parameters required for the system 
dynamics including those that describe the joint flexibilities.  

The kinetic energy of a flexible-joint FFSMS, including 
motor inertial properties, is given by, [12] 

 T =1
2
0ω 0

T 0D* 0ω 0+
0ω 0

T 0DΘ
!Θ+ 1
2
!ΘTDΘΘ

!Θ   (33) 

Since the flexibility of the joint i  is modeled using an 
elastic torsion spring of constant stiffness ki  and a damping 
element bi , the forces due to the joint flexibility are given by 

 Fflex (Θ)=K(θm−q)  (34) 

and 
 Fdiss (Θ)=B( !θm− !q)  (35) 

On orbit, the potential energy due to the gravity is neglect-
ed. However, the potential energy due to joint flexibility is 
given by (5) and the dissipative loses caused by the damping 
elements at the joints are given by 

 Tdiss (B, !θm, !q)= ( !θm− !q)
TB( !θm− !q)

0

t

∫ dt   (36) 

In the free-floating mode, only manipulator joints are acti-
vated. The energy provided by the joint actuators is 

 Tm= τT !θm
0

t

∫ dt   (37) 

The energy generated by the actuators is balanced by the 
system kinetic and potential energy, and the dissipative loses 
due to damping. Therefore, the energy balance is written as 

 Tm=T +Tflex−Tdiss   (38) 

where the terms Tm , T , Tflex  and Tdiss  are given by the Eqs. 
(37), (33), (5) and (36), respectively. 

According to the above equations, the energy balance of a 
flexible-joint FFSMS is given by: 

 
Tm=

1
2
0ω 0

T 0D* 0ω 0+
0ω 0

T 0DΘ
!Θ+ 1
2
!ΘTDΘΘ

!Θ

+1
2
(θm−q)

TK(θm−q)− ( !θm− !q)
TB( !θm− !q)

0

t

∫ dt
  (39) 

It turns out that Eq. (39) can be written in a linear form 
with respect to the dynamic parameters 

 Tm=YEB( !q,q, !θm,θm,
0ω 0 )πEB   (40) 

where YEB  is the regressor matrix and the vector of the pa-
rameters to be estimated πEB  contains all the necessary pa-
rameters required to define the full dynamics of a flexible-
joint FFSMS. 

It is important to note that the application of the estimation 
method based on the energy balance is tolerant to sensor 
noise since it requires only measurements of the spacecraft 
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angular velocity 0ω 0 , the manipulator link and motor  angles 
q  and θm , and the corresponding velocities !q  and !θm  
which do not contain significant noise. 

If N  measurements of these variables are obtained at giv-
en time instants t1,t2,...,tN  along an appropriate trajectory, the 
vector of the estimated parameters πEB  can be computed by 
a least-squares technique 

 πEB=(ŶEB
T ŶEB )

−1ŶEB
T T̂m  (41) 

V. SIMULATION RESULTS 
Example 1: The planar 7-DoF FFSMS system shown in Fig. 
3 with parameters in Table I is employed to illustrate the pro-
posed method. The 4 DoFs correspond to the two flexible 
joints and the other 3 DoFs describe the planar motion of the 
base of the FFSMS. The motor inertial properties as well as 
the properties of the flexible drive are presented in Table II. 
The angular momentum of the system is hCM =1Nms . 

For this planar space manipulator, the property of the line-
arity of the angular momentum conservation with respect to a 
vector of the estimated parameters, (19), yields: 
 hCM =Yh( !q,q, !θm,θ0, !θ0 )πh  (42) 
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Fig. 3. A Planar 7-dof flexible-joint FFSMS and its main parameters. 

Table I. Parameters of the 3 body planar system. 
Body mi (Kg) li (m) ri (m) Ii (Kg m2) 

0 4000 -        5.0 666.7 

1 200 5.0  5.0 33.3 

2 1000 2.5  2.5 50.0 

Table IΙ. Parameters of the motors and the drive mechanisms. 
Motor ni  ki (Nm/rad) bi (Nms/rad)  mmi  (Kg) Imi (Kg m2) 

1 50 1000 75 1.0 1.0 

2 50  1000    85 1.0 1.0 

The vector of the estimated parameters πh  is given by: 

 πh= a00
* a01

* a02
* a11

* a21
* a22

* Im1 Im2⎡⎣ ⎤⎦
T

  (43) 

where Imi
 is the moment of inertia of the rotor i with respect 

to its axis, and aij
* ,(i, j=0,1,2)  are combinations of spacecraft, 

manipulator and motor parameters, and given in [12]. 
Note that the vector of the estimated parameters does not 

contain any of the parameters that describe the joint flexibil-

ity and thus, as mentioned before, this method cannot esti-
mate the full dynamics of a flexible-joint FFSMS. 

However, the properties of the linearity of equations of 
motion and the system energy balance equation with respect 
to a vector of estimated parameters yield, respectively 

 Q*=[ 0T QT ]T =Yτ (!!q, !q,q,!!θm, !θm,θm,θ0, !θ0,!!θ0 )π τ  (44) 

and 
 Tm=YEB( !q,q, !θm,θm, !θ0 )πEB   (45) 

where the vectors of the estimated parameters π τ ,πEB  also 
contain the parameters characterizing the joint-flexibilities: 

 π τ=πEB= πh
T k1 k2 b1 b2⎡⎣ ⎤⎦

T
 (46) 

The vector πh  is given by (43) and the parameters ki  and 
bi  describe the flexibility of joint i. 

The N  measurements required for the construction of the 
regressor matrices Ŷτ  and ŶEB  appear in (27) and (41), re-
spectively, and are obtained employing exciting trajectories 
qi
d ,i=1,2 given by: 

 qi
d=Aisin(ω i t)  (47) 

The paremeters were chosen as A1=20
0 , ω1=0.25rad /s  for 

the first and A2=40
0 , ω 2=0.5rad /s  for the second joint. 

The gyro measurements were simulated using (28) and 
(29) with standard deviations σω =3.1623⋅10

−4µrad s3/2  and 
σ bω =0.31623µrad s1/2  respectively, and with initial bias 
bω ,0 =0.1deg hr [14]. The encoder noise, velocity and accel-
eration variances are given by (32), where the sample period 
is chosen as ΔT =0.05s . The precision q  depends on the 
encoder counts; for a 500 counts encoder, it can be set equal 
to q=0.003rad . Thus 

 

σ pos
2 =0.00025rad

σ vel
2 =0.2 rad

s
σ accel
2 =128,000 rad

s2

  (48) 

A PD controller is applied to the system with gains given 
by the following 2×2  matrices 

 KP=diag(1000,1000),KD=diag(250,250)   (49) 

The estimated parameters obtained by the DE and EB 
methods are given by the solution of (27) and (41), respec-
tively. The actual parameters and the results of the identifica-
tion methods DE and EB, using measurements with noise, are 
displayed in Table III. 

Table IV shows the corresponding relative errors, with re-
spect to the actual parameters, of both methods using meas-
urements with and without noise. As it can be shown in the 
second and third column of Table IV, in the case without 
noise in the measurements, both methods estimate the re-
quired parameters almost exactly. However, when noisy 
measurements are introduced, the DE method fails to identify 
the parameters, displaying errors between 21 and 144%, see 
fourth column of Table IV. In contrast to these results, the 
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developed EB method, exhibits errors that are 3-207 times 
smaller than those obtained with the DE method (fifth col-
umn of Table IV), since the EB method does not require 
noisy acceleration measurements. 

Table III. Actual and estimated parameters with the DE and EB methods. 

 
π  

Actual values 
 

×104  

Estimated 
values (DE) 

×104  

Estimated 
values (EB) 

×104  

a00  2.3774 4.7320 2.2731 

a01  4.2330 8.4258 4.0615 

a02  0.9612 1.9129 0.9168 

a11  8.1832 16.2882 7.8909 

a21  1.9709 3.9231 1.8933 

a22  0.5099 1.0150 0.4888 

Im1  0.0001 0.00017 0.00010 

Im2  0.0001 0.00012 0.00010 

k1  0.1000 0.1669 0.0919 

k2  0.1000 0.1553 0.0978 

b1  0.0085 0.0207 0.0077 

b2  0.0075 0.0120 0.0071 

Table IV. Results from the DE & EB methods with & without noise. 

π  

Without noise With noise 
Relative 

Error 
(%) 

(DE) 
×10−8  

Relative 
Error 
(%) 
(EB) 
×10−6  

Relative 
Error (%) 

(DE) 

Relative 
Error (%) 

(EB) 

a00  0.1645 -0.1720 -99.0396 -4.3859 

a01  0.1646 -0.0901 -99.0497 -4.0512 

a02  0.1646 -0.1169 -99.0108 -4.6137 

a11  0.1646 -0.0166 -99.0439 -3.5711 

a21  0.1645 -0.0403 -99.0507 -3.9361 

a22  0.1644 -0.0652 -99.0478 -4.1264 
Im1  0.0434 0.1119 -72.3263 -0.3497 

Im2  0.0344 -0.1614 -20.8492 -6.4170 

k1  0.0871 -0.1358 -66.8517 -8.0512 

k2  0.0928 -0.1024 -55.3035 -2.1779 

b1  0.1594 -0.2205 -143.7792 -9.1603 

b2  0.0843 0.3829 -60.4581 -5.4391 

Next, we investigate if the above estimated parameters ob-
tained by the EB method can describe the full dynamics of 
the flexible-joint FFSMS sufficiently. 

Considering the system dynamics, given by (14), one can 
study the response of the system by applying a desired torque 
on the joint motors. The applied torque input is given by,  

 τ= 0.5cos(t)
0.1cos(0.1t)

⎡
⎣⎢

⎤
⎦⎥
Nm   (50) 

Two cases are considered. First, the system dynamics is 
described by the estimated values obtained by the EB method 
in Example 1 and shown in the fourth column of Table III. In 
the second case, the parameter values are set with errors 
±10%  of their nominal values. The response for each case is 
compared with the actual system response (i.e. the response 
using the actual system parameters, as given in the second 
column of Table III). 

Fig. 4a shows the response of the link angles of the system 
shown in Fig. 3, considering (i) the actual system parameters, 
(ii) the estimated parameters by the proposed EB method and 
(iii) the parameters with error ±10% . The corresponding 
relative errors in the responses are presented in Fig. 4b. As 
can be observed, the resulting response obtained by using the 
parameters estimated by the EB method is very satisfactory 
compared with the response obtained by parameters with 
±10%  error, since the former follows the system actual re-
sponse while the latter exhibits a continuously diverging er-
ror. Therefore, one can conclude that the estimated parame-
ters obtained by the EB method can describe the full dynam-
ics of the flexible-joint FFSMS sufficiently. 
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Fig. 4. (a) The response of the link angles considering (i) the actual system 

parameters, (ii) the estimated by EB method and (iii) parameters 
with error ±10% , (b) the corresponding % relative errors. 

VI. CONCLUSIONS 
In this paper, the estimation of full dynamics of a space 

manipulator system with joint flexibilities in the free-floating 
mode was studied. It was shown that the methods based on 
the angular momentum conservation, although they are in-
sensitive to sensor noise, they cannot estimate the joint flexi-
bility parameters. Here, a parameter estimation method, 
which is based on the energy balance during the motion of a 
flexible-joint FFSMS was developed. The method estimates 
all system parameters including those that describe the joint 
flexibilities, and requires only measurements of joint angles 
and rates, spacecraft attitude and angular velocity, and joint 
torques. In contrast to the methods based on the equations of 
motion, the developed method is insensitive to sensor noise, 
since no information about spacecraft and joint accelerations, 
is required. The application of the proposed method is valid 
for spatial systems. It was shown that the parameters estimat-
ed by the proposed method describe the system full dynamics 
sufficiently. The method was illustrated by a planar 7 degrees 
of freedom (DoF) flexible-joint FFSMS.  
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