
  

  

Abstract— This paper presents an efficient method of 
stabilizing the gait of an underactuated biped with compliant 
legs and semicircular feet. First, the model is defined, 
incorporating elements that are often present in experimental 
biped robots. The biped’s passive behavior is studied through 
numerical simulations that provide insight into the gravity’s 
contribution as an energy input to the system. Based on this 
study, it is shown that an augmented biped -with the addition of 
a counterweight joint at the hip- is able to perform stable gaits 
with minimal input. This design is implemented easily as it does 
not require ankle torques; instead, both motors are mounted at 
the biped’s hip. The control law used for the stabilization is the 
combination of virtual-gravity components with non-linear PD 
terms. The stable gaits performed by the augmented biped on 
level floor strongly resemble the passive gaits of the original 
biped walking on a slope, resulting in an efficient, natural-like 
motion of low transport cost.  

I. INTRODUCTION 
Through the study of human gait mechanics, a special 

class of passive bipedal machines has emerged, which exhibit 
walking on negative slopes as a natural passive-dynamic 
mode [1]. Several robot designs take advantage of this 
behavior, relying on their passive dynamics and only using 
actuators as the means of compensating energy losses 
[2][3][4][5][6]. This approach results in efficient forms of 
transport, as the required energy input is minimal. 

Most of the published research on the dynamics of 
bipedal machines have made the assumption of rigid feet and 
thus fail to simulate the energetic losses of damped 
deformations, as well as the dynamics during the double 
stance phase of walking. Energetic losses in such models are 
only present due to the velocity discontinuity just-before and 
just-after instantaneous impacts, which are computed via the 
conservation of angular momentum [2]. Works that have 
employed models with compliance have neglected damping 
in leg axial impedance [7][8]. However, leg impedance has 
been proven to be an important factor that needs to be 
considered in studying bipedal walking [9][10]. 

Virtual gravity control has been proposed as a method of 
replicating passive gaits on level ground with minimal torque 
input. In an effort to provide each of the two legs with its 
proper input torque, most of this type of research concerns 
actuated robots with active ankle joints [2][4]. Such an 
approach is in practice difficult to embody in a biped robot, 
as one end of the ankle actuator must be fixed to the ground.  

To bypass this limitation, control schemes have been 
proposed that result in stable biped gaits using a single 
actuator for the inter-leg angle [11][12][13]. As a 
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consequence of applying the same torque magnitude on both 
limbs, these schemes fail to replicate the biped’s optimal 
passive motion on level floor. 

Other studies have incorporated a torso for housing the 
two leg actuators, thus mimicking the human anatomy. The 
torso’s position was mechanically constrained through the 
use of an angle-bisecting mechanism [14], and a PD 
controller was used to keep the torso up [15]. Virtual gravity 
control laws were used for a biped with a torso, which is kept 
in position by a linear PD controller located at the hip [16]. 
However, the authors consider a fully actuated model and 
include actuated ankle joints, bypassing the problem of 
underactuation, and resulting in the limitations mentioned 
above [16]. Also, the use of linear PD terms overwrites the 
natural dynamics of the biped, as they intervene in the 
dynamics considerably, even for small torso deviations. 

In this paper, a passive biped initial model is studied that 
includes elastic and damping elements, providing a more 
accurate description of the energy lost during a stride, and 
allowing for detailed simulation of the heelstrike collision 
and for analysis of the gradual support transfer between the 
two compliant legs. This model also includes point masses at 
the hip and the feet of the biped; these are semicircular in 
shape, acting as a partial substitute of ankle joints [11]. The 
point masses attached to the feet are equally important, as 
they allow the dynamic study of their pendulum-like motion 
during the swing phase.  

It is shown that instead of an upward torso, augmenting 
the biped with a hip counterweight results in repetitive gaits 
under a virtual gravity controller, by optimally using the 
counterweight’s contribution to the biped’s underactuated 
dynamics. The actuated DOFs are the angles between each of 
the two legs and the hip counterweight. However, the gaits 
performed with this controller are found to be non-
stabilizable by design. A stabilizing controller that includes 
both a model-based virtual gravity part and non-linear PD 
terms is developed, partially compensating the gravitational 
input absent in level ground locomotion. Strategic selection 
of the nonlinear PD controller’s gains efficiently stabilizes 
the closed-loop system, while the gaits performed remain 
almost identical to the ones performed by the passive model. 

This paper is organized in six sections. Section II presents 
the derivation of the initial passive biped model. In Section 
III, the model is studied for various parameter combinations 
and an optimal parameter set is selected as the nominal one. 
In Section IV, an augmented underactuated virtual gravity 
biped model is developed as to better take advantage of its 
passive dynamics. A stabilizing controller that includes both 
virtual gravity and non-linear PD terms is studied and tested 
in Section V, where our study’s results are also presented. In 
Section VI conclusions are drawn. 
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II. PASSIVE BIPED MODELING 
The model studied initially in this paper differs from what 

has been published to date, in that it incorporates elastic and 
damping elements resulting in compliant legs. Following 
published results [11], semicircular profiles have been chosen 
for the model’s feet, in order to facilitate step-to-step 
transitions and help propel the biped forward, imitating the 
existence of an active ankle joint. The model also includes 
three point-masses, one of which is located at the hip while 
the remaining two correspond to the two feet. 

The biped model is presented in Fig. 1 during the single 
stance phase of walking, where only one of the two legs is in 
contact with the ground. The parameters that define the 
passive model are the uncompressed leg length, Lnat, the hip 
point mass M, the foot point mass m, the foot radius r, the 
foot mass distance l, the spring constant k and the damping 
constant b. The biped walks passively on a floor of slope α, 
here α<0. The system is described by the generalized vector 
q, which consists of the stance leg angle θ, the stance leg 
length L1, the swing leg angle ψ, and the swing leg length L2: 
    q = [θ , L1,ψ , L2]T   (1) 

The assumptions made in this work are as follows: (i) the 
floor and feet are considered to be inelastic and non-
compliant, (ii) the feet in contact with the ground perform 
rolling without slipping, (iii) floor contact of the swing foot 
during its forward advancement in the single stance phase is 
ignored (iv) there is no distinction between left and right leg, 
and (v) leg angles θ and ψ are defined in opposing directions. 
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Figure 1. Passive biped model during the single stance phase of walking. 

A. Single stance phase 
During the single stance phase, the system is described by 

q given in (1), also see Fig. 1. The corresponding equations 
of motion are written in the Euler-Lagrange formulation as: 
    M(q)q+C(q, q) q+K(q)+G(q) = 0   (2) 

where M is a 4x4 inertia matrix, C is a 4x4 matrix that 
contains centrifugal, Coriolis and damping terms, K is the 
4x1 stiffness vector and G is a 4x1 vector containing 
gravitational terms. The details of these elements have been 
spared here due to space limitations.  

B. Double stance phase 
As Fig. 2 shows, during the double stance phase only two 

variables are independent; the other variables are subject to 
geometric limitations that result from assumptions (i) and (ii). 
These translate to a set of two constraints that must remain 
true during the time both legs are in contact with the ground: 

    s1(q) = (L1 − r)cosθ − (L2 − r)cosψ = 0   (3) 

    s2(q) = dHS − d + r(θHS −θ +ψ HS −ψ ) = 0   (4) 

where d is the distance of the two semicircular feet centers:  
   d = (L1 − r)sinθ + (L2 − r)sinψ   (5) 

and the subscript HS denotes the variables’ values at Heel-
Strike (HS), see Fig. 2. 
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Figure 2. Passive biped model during the double stance phase of walking. 

In order for conditions (3) and (4) to be satisfied, the 
dynamic equations must be modified with the addition of 
generalized constraint forces: 
    fconstr . = ΠΤ (q)λ   (6) 

In (6), λ is the vector containing the Lagrange multipliers 
λ1 and λ2, corresponding to constraints s1 and s2 respectively. 
The 4x2 constraint matrix Π is derived according to 
Lagrange’s formulation:  

 
  
π jk =

∂sj

∂qk

,    j=1...2, k = 1...4   (7) 

Then, the dynamic equations of the double stance phase 
can be expressed as: 

 

    

M(q)q+C(q, q) q+K(q)+G(q)− ΠΤ (q)λ = 0
s1(q) = 0
s2(q) = 0

  (8) 

where the rest of the matrices are as defined earlier. 

C. Phase transitions 
Having defined the two phases of a full step, two 

conditions need to be derived upon which the phase 
transitions occur. The first is the event HS, which marks the 
end of the single stance phase and is composed of three 
separate conditions that need to be satisfied at the same time. 
These are the foot-on-ground condition, the swing leg 
advancement condition, and the swing leg retraction 
condition, defined respectively by (9)-(11): 
   (L1 − r)cosθ − (L2 − r)cosψ = 0   (9) 

  ψ > 0   (10) 

 
  
d
dt

[(L1 − r)cosθ − (L2 − r)cosψ ] < 0   (11) 

The second event is the Toe-Off (TO), which ends the 
double stance phase and occurs when the spring force 
overcomes the gravity force projected on the leg: 
   k(L1 − Lnat )− mg cos(α −θ ) > 0   (12) 
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D. Step function 
We first define the system’s state vector x, which is 

composed of the generalized variables q and velocities q̇:  
     x = [θ , θ , L1, L1,ψ , ψ , L2 , L2]T   (13) 

Let the state vector be xn at the beginning of the nth step. 
The step begins with the single stance phase, which assumes 
xn as its initial condition, advances the model’s state in the 
way described by (2) and ends at HS, with an updated state 
vector xn,HS. This process may be written in the form of a 
discrete function, f1, for the single stance phase:  
 

   
xn,HS = f1(xn )   (14) 

After the HS, the double stance phase (8) starts with 
initial condition xn,HS and ends at TO, with a final state vector 
xn,TO. The discrete function describing this transition is f2:  
 

   
xn,TO = f2(xn,HS ) = f2( f1(xn ))   (15) 

As a result of assumptions (iv) and (v), the state variables 
must be transformed before the beginning of the (n+1)th step:  

 

   

θn+1 = −ψ n,TO ,  ψ n+1 = −θn,TO

θn+1 = − ψ n,TO ,  ψ n+1 = − θn,TO

L1,n+1 = L2,n,TO ,  L2,n+1 = L1,n,TO

L1,n+1 = L2,n,TO ,  L2,n+1 = L1,n,TO

  (16) 

This is achieved by multiplying the state vector xn,TO with the 
8x8 symmetric matrix T, resulting in the initial state xn+1: 
 

  
xn+1 = Txn,TO   (17) 

The non-zero elements of T result from (16) as: 
t15=t26=t51=t62=-1, t37=t48=t73=t84=1. Finally, we can define a 
discrete function that describes the transition from xn to xn+1. 
We call this step function P: 
     xn+1 = Tf2( f1(xn ))  P(xn )   (18) 

E. Fixed points 
Fixed points of the system are state vectors x*

 for which 
the step function output xn+1 coincides with its input xn:  
   x

* = P(x*)   (19) 

To locate these points, a Newton-Raphson numerical 
method is employed: 

    xn
k+1 = xn

k + (I8x8 −∇P(xn
k ))−1[P(xn

k )− xn
k ]   (20) 

Eq. (20) is repeatedly solved until numerical convergence, 
according to the following empirical criterion: 

 
   
xn

<k+1> − xn
<k>

∞
<10−6   (21) 

Fixed points found in this way constitute repetitive gaits 
performed by the biped. 

F. Fixed point stability 
Fixed points of dynamical systems can be characterized 

regarding their stability. This is possible through the local 
linearization of function P around the fixed point, x*: 

 

   
Δx*

n+1 =
∂P(x*)
∂x

x=x*

Δx*
n  AΔx*

n   (22) 

where Δx = x – x*, is a small deviation of the state vector 
from its fixed-point value. 

The stability of the discrete system defined by P at the 
fixed point x* is characterized by the eigenvalues of matrix 
A: all eigenvalues of A must have a magnitude less than 1 in 
order for the fixed point to be stable. 

III. PASSIVE GAIT ON SLOPE 
The biped’s passive dynamics are described by (18). 

Through dimensional analysis of P, it is shown that system 
dynamics depend only on a set of six non-dimensional 
parameters: slope angle α, damping parameter β, elasticity 
parameter κ, hip-to-foot mass ratio µ, foot mass distribution 
parameter λ and rolling factor ρ. These are defined in Table I. 

Eq. (20) is employed to locate fixed points of systems 
with varying non-dimensional parameter combinations. Once 
a fixed point is found, its stability is evaluated by studying 
the eigenvalues of the linearized matrix A in (22). 

Fig. 3 presents the magnitude of the maximum eigenvalue 
of gaits resulting from systems of various parameter 
combinations. Gaits corresponding to points plotted in green 
are stable, while red points indicate unstable gaits. Nominal 
parameter values were selected through a minmax algorithm 
applied to the eigenvalues of A and are listed in Table I. 
These constitute an optimal system, in the sense of passive 
stability.  Each of the plots in Fig. 3 corresponds to variations 
of one of the system-defining parameters, while the rest of 
the parameters remain fixed at their nominal values. 

Fig. 4 presents the leg-angle passive gait phase space of 
the system composed by non-dimensional parameters at their 
nominal values given in Table I. 

TABLE I.  NON-DIMENSIONAL MODEL PARAMETERS. 
Parameter  Value Nominal Value 

α α  -2° 

β 
  
b Lnat ( M g )   3.63 

κ   kLnat ( Mg)  29.7 

λ  l Lnat  0.14 

µ  m M  0.016 

ρ   r Lnat  0.363 

 
Figure 3. Stability analysis of parameter variations. 
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Figure 4. Leg-angle passive dynamics stable phase space, nominal system. 

IV. LEVEL GROUND WALKING 
The passive gaits achieved require a slope α<0. However, 

if α=0, the slope terms Gα driving walking disappear and 
passive walking is not achieved. Therefore, we explore the 
idea of substituting these terms with actuation, when α=0. 

A. Gravity compensation terms 
The virtual gravity control approach suggests that in order 

for the biped on level ground to act as if it walked passively 
on slope α, the theoretical actuation input fg,th must be: 

 
   
fg ,th = fθ , fL1, fψ , fL2

⎡⎣ ⎤⎦
T
= G0(q) - Gα (q)   (23) 

where Ga is the gravity vector in (2) and is given by (24), and 
G0=Gα with α=0. The elements of Gα are as follows: 

 

  

g1 = g{( M + m)[r sin a + (L1 − r)sin(a −θ )]

+m[r sin a + (l − r)sin(a −θ )]}
g2 = g( M + m)cos(a −θ )

g3 = gm(L2 − l)sin(a +ψ )

g4 = −gmcos(a +ψ )

  (24) 

Our model contains four degrees of freedom, of which 
two need to be controlled: these are the leg angles θ and ψ. 
Leg lengths L1 and L2 are not to be controlled since the 
implementation of axial actuators in a biped robot would 
present design difficulties and increase power consumption; 
the corresponding terms, fL1 and fL2, have been spared here.  

The terms of (23) corresponding to the angular degrees of 
freedom θ and ψ, i.e., fθ and fψ, were computed during a step 
of the nominal biped (Table I) and are plotted in Fig. 5.  

 
Figure 5. Gravity compensation input torques. 

It is observed that fθ and fψ have an almost flat profile. 
However, they are of significantly different magnitude, 
which highlights the need for using two separate actuators to 
control the biped. 

B. Augmented model 
Observation of Fig. 5 leads to the conclusion that each of 

the two leg actuators can be mounted between their 
corresponding leg and a third link, resulting in the augmented 
biped model shown in Fig. 6.  

 
Figure 6. The augmented biped model for level ground walking. 

The augmented model’s generalized vector during single 
stance phase, q+, includes the third link’s angle φ, in addition 
to the rest of the previously used generalized variables: 
    q

+ = [θ , L1,ψ , L2 ,ϕ]T   (25) 

We select actuator torques to be: 

 

   

ug =
ug1

ug 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

fθ
fψ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

  (26) 

Therefore, the input to the augmented model becomes: 

 

   

f = Sug =

1 0
0 0
0 1
0 0
1 −1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

fθ
fψ

⎡
⎣
⎢

⎤
⎦
⎥ =

fθ
0
fψ
0

fθ − fψ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (27) 

and satisfies (23) partially, by providing leg angles θ and ψ 
with the exact torques needed to replicate their passive 
trajectories. Note that this control scheme does not intend to 
keep the newly introduced link in a vertical, torso-like 
position; instead it is used as a mounting device for the two 
leg motors. As such, it is subject to the almost constant motor 
reaction torque sum: 
 

 
Thip = fθ − fψ   (28) 

 By selecting this link to have its center of mass located at 
a distance rcw from the biped’s hip joint, gravitational torque 
is developed: 
   Tcw = mcwrcw cosϕ  (29) 

where mcw is the link’s mass and φ is the link’s angle with 
respect to the horizontal axis. Then, this link acts as a 
counterweight by balancing the motor reaction torque if the 
following relation holds: 
 

 
Tcw = Thip  (30) 
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In practice neither Thip nor Tcw remain constant throughout 
a step: the former depends on the gravity compensation terms 
of Fig. 5, while the latter depends on the counterweight angle 
φ. The mean value of the counterweight angle φ must be 
close to zero in order for the link to optimally act as a 
counterweight. Assuming that this is the case, (28) and (29) 
are combined to define a design relationship for mcwrcw: 
 

  
mcwrcw = max(Thip )  (31) 

To better replicate the passive model’s dynamic behavior, 
the augmented model’s hip mass was given a value of M0 so 
that the total mass supported by the legs is still M: 
   M = M0 + mcw  (32) 

Finally, to obtain level ground walking, the slope angle α 
was set to zero. The rest of the augmented model’s 
parameters exist in the passive model as well, and their 
values are kept unchanged. 

 Τhe step function P of the augmented model was 
described analytically, and its fixed points were located and 
evaluated. Simulations showed that the augmented biped 
manages to capture the dynamic trajectories of the passive 
biped with low energetic cost, but its fixed points were not 
stabilizable by any combination of mcw and rcw, resulting in 
the biped “falling down” after about 500 steps.  

V. LEVEL GROUND GAIT STABILIZATION 
Gait stabilization is very important for legged robots, as 

they are often used on rough or irregular terrain. Moreover, 
encoder feedback errors introduce some level of disturbance 
to the system. For these reasons, the biped robot’s controller 
must guarantee its orbital gait stability. 

A. Control scheme 
To stabilize the system, the motor control torque applied 

between the stance leg and the counterweight link was 
enhanced with two additional third-order nonlinear PD terms:  

 

    
u = ug + uPD = ug +

−K p (ϕ −ϕd )3 − Kd ( ϕ − ϕd )3

0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (33) 

The subscript “d” in (33) stands for counterweight desired 
values. These are obtained by simulations ran with the virtual 
gravity input only, as discussed previously.  

The choice of raising φ errors to the third power was 
made in order for the PD part of the controller to compensate 
only when these errors become significant; this also allows 
choosing relatively small gains. However, aside from 
stabilization, an important reason for this controller is that the 
biped natural dynamics are not overwritten when the biped 
moves within its fixed-point orbit, as would result if linear 
terms were used, i.e. proportional to the φ error.  

Picking gains Kp and Kd with trial and error is relatively 
easy; choosing them more systematically is discussed next. 
Simulations of the augmented biped model for different 
combinations of these gains were conducted and resulting 
gaits were evaluated in terms of stability, energetic cost of 
transport, resemblance to the passive trajectories and 
maximum motor input torque, as discussed next. 

B. Results 
As mentioned above, the control scheme PD terms (33) 

were introduced to achieve stable gaits on level floor. 

Stability of the augmented biped model on level ground is 
investigated in Fig. 7a with respect to the PD controller gains. 
As expected, the gait performed for a gain combination (Kp, 
Kd)=(0,0) is unstable. This gain selection corresponds to the 
virtual gravity control scheme given by (26). Another region 
of instability results for low Kp and high Kd, shown as a 
yellow region in in Fig. 7a. However, it is observed that 
many other gain combinations lead to stable gaits. This is 
especially useful in designing a stabilizing controller for the 
biped on level ground, as it allows us to ensure stability of the 
system, while simultaneously satisfying additional criteria. 
 

 
Figure 7. Augmented biped model gait characteristics for combinations of 
(Kp,Kd): (a) Stability. (b) COT. (c) Trajectory error. (d) Max. motor torque. 

Second to stability, an important factor that needs to be 
optimized is the achieved gaits’ energetic efficiency. This is 
usually quantified in the form of COT (cost of transport): 

 
  
COT =

Ein

( M + 2m)gΔx
 (34) 

where Ein is the total energy input, supplied by the robot’s 
actuators and calculated by the time integral of absolute 
power, as it is assumed that the motor drives are not capable 
of energy regeneration during braking, while Δx is the 
distance travelled. It has been shown that for bipeds walking 
passively on a slope of α (by extension, imitating passive 
walk of slope α), the COT is equal to tanα [7]. This calculates 
to an optimal value of 0.035 for the nominal slope angle.  

Fig. 7b presents the COT of the gaits performed by the 
augmented biped model under control scheme (33). 
Computed COT values are comparable to the optimal one, 
but slightly greater. This is partly accounted for by the non-
regenerative limitation of the drives, while the use of the PD 
controller also results to greater power consumption. 
However, the closeness of the obtained values to the optimal 
COT suggests that despite active control, the actuated biped 
moves almost as efficiently as the passive one. 

Achieved gaits were also evaluated regarding their 
resemblance to the passive biped’s gait. This was quantified 
through trajectory deviations, by adding the mean relative 
trajectory errors of the four generalized variables present in 
both the augmented and the passive model and their 
velocities, for a total simulation time of ΔΤ=tmax-tmin: 
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etraj =
1
ΔT

qi (t)− qi
+ (t)

max qi t=tmin

t=tmax( ) dt
tmin

tmax

∫
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪qi=1

4

∑

         + 1
ΔT

qi (t)− qi
+ (t)

max qi t=tmin

t=tmax( ) dt
tmin

tmax

∫
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪qi=1

4

∑

  (35) 

Small values of the trajectory error, etraj, correspond to a 
high degree of resemblance between passive and augmented 
model gaits. Fig. 7c presents the value of etraj for gaits 
resulting from various combinations of controller gains. In 
total, it is shown that the augmented model under the selected 
control scheme results in satisfactory gait resemblance with 
respect to the passive gait. 

The final subject of investigation was the maximum 
motor input torque. This was calculated as the maximum 
value of the input torques (33) during one step, see Fig. 7d.  

As an example, we study the gait corresponding to (Kp, 
Kd)=(30,15), a selection which has been marked with an 
arrow in Fig. 7. This gain selection results in a stable gait 
with a maximum eigenvalue magnitude of 0.51, with a COT 
of 0.038, and state vector trajectories almost identical to the 
passive gait’s, with a total error of less than 1.4%, while 
motor torque requirements remain under 35 Nm, for a total 
biped weight of 80 kg. Fig. 8 presents the counterweight 
link’s state variations and input torque during five 
consecutive steps, with initial conditions chosen outside the 
model’s fixed-point trajectory. 

t [s]
0 1 2 3 4 5 6 7

0
5
10

Counterweight angle

t [s]
0 1 2 3 4 5 6 7

-50

0

50
Counterweight angular velocity

t [s]
0 1 2 3 4 5 6 7

0

50
Counterweight link input torque

Gravity compensation terms
Grav. comp. + PD terms  

Figure 8. Augmented model gait stabilization for (Kp, Kd)=(30, 15). 

It can be seen that the developed controller manages to 
stabilize the system and guarantee convergence to a stable 
gait. The PD terms mostly intervene to correct the initial 
conditions. After this initial correction, they only compensate 
at the beginning of each step of the stable gait, allowing the 
expression of the biped’s natural dynamics thereafter.  

VI. CONCLUSION 
A model of a passive biped robot with compliant legs and 

semicircular feet was developed. Its design was optimized 
with respect to the stability of its passive gait on inclined 
terrain. To replicate this gait on level ground, and therefore to 
supply the robot with the input torques dictated by the virtual 
gravity methodology, the model was augmented with the 

addition of an extra link at the hip joint. To stabilize the 
biped, this link was given the form of an almost-horizontally 
positioned counterweight, taking advantage of the input 
torque profiles. The control law developed for the 
stabilization of the augmented biped is a combination of 
virtual-gravity components with non-linear PD terms. The 
stable gaits performed by the augmented biped on level floor 
strongly resemble the passive gaits of the original biped 
walking on a slope, resulting in an efficient, natural-like 
motion of low transport cost.  

Since the swing leg has no mechanism to “clear” the 
floor, as a knee mechanism would allow, we plan to build a 
robot with swing leg retraction and operate it under the 
developed control scheme for validation and optimization. 
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