
  

  

Abstract— While legged locomotion is a rapidly advancing 
area in robotics, several issues regarding the performance of 
such robots on deformable ground are still open. In this paper, 
we generate a pronking gait on a quadruped robot using a 
controller, which takes into account the effects of ground 
deformation. The controller, initially developed for monopods, 
is modified appropriately to operate for quadrupeds. The robot 
uses a reaction wheel to retain a desired body pitch. The 
dynamic models of leg motor drivetrains and of the reaction 
wheel are incorporated and their importance in the design of 
legged robots is highlighted. Simulation results show good 
performance in reaching commanded apex heights and forward 
velocities when traversing various deformable terrains, 
demonstrating that the developed controller is quite promising. 

I. INTRODUCTION 

A most significant challenge in the field of legged robotics is 
the development of control algorithms that allow legged 
robots to traverse any type of terrain, while retaining desired 
motion characteristics. However, control requirements are 
demanding, especially when the terrain profile is rough. With 
these in mind, a common control strategy used by quadrupeds 
for traversing rough terrains involves footstep planning. 
LittleDog has presented significant results on uneven terrain 
[1]. However, it is capable of static walking only. StarlETH 
also uses a similar approach [2]; a foot placement algorithm 
along with distribution of virtual forces among the stance 
legs is used to reject perturbations from the environment. 

Despite the increasing complexity of control algorithms 
for legged robots, many studies do not consider the effect of 
terrain compliance and permanent deformations. For 
example, researchers working on MIT’s Cheetah 2 determine 
a target ground force profile according to the desired duty 
cycle and stride duration, [3]. The terrain is considered stiff 
and completely even. The effects of compliant terrains were 
taken into account in our recent work in which we developed 
a novel energy-based controller for a monopod hopping robot 
running over compliant terrains, using only one actuator [4]. 

It is usual to model the foot-terrain interaction of legged 
robots as a revolute joint. However, in this way, the effects of 
contact constraints and of terrain compliance on motion 
performance remain hidden. A number of steps are necessary 
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to assess such effects. For example, a viscoelastic model was 
used in [5], while a terradynamics approach was employed in 
[6]. A viscoplastic model has been proposed, which enables 
the assessment of the effects of terrain permanent 
deformations by taking into account various realistic 
parameters such as compaction in fast dynamic walking [4]. 

Another critical element in legged locomotion control 
schemes is the control of body attitude; tasks such as jumping 
over obstacles, rapid turning while running, and generally 
recovering from unexpected disturbances, require that the 
robot is capable of performing complex maneuvers in the 
aerial phase. So far, attitude control is mostly achieved 
indirectly through leg motion in the stance or in the aerial 
phase [7], [8], indicating that a tail-like system similar to that 
in animals is not always necessary. However, this technique 
assigns more control tasks to the legs, and thus it may not be 
optimal when the robot tries to fulfill more demanding tasks. 
Herein, as well as in numerous recent studies [9], [10], it is 
proposed that a dedicated tail-like appendage can be usefully 
incorporated in a legged robot to aid in reorientation 
maneuvers and enrich the repertoire of robot capabilities. 
Nevertheless, the additional capabilities must be traded off 
against the additional weight and power consumption. 

In this paper we focus on a quadruped robot running on 
compliant terrain using a reaction wheel to control its body 
attitude. Using detailed actuator models, we highlight the 
importance of the limits imposed by the gearboxes and 
servoamplifiers, and examine their effect on quadruped 
motion by generating realistic gait simulations. The concept 
of virtual actuators is introduced that must be considered in 
models with virtual legs. To generate a pronking controller 
for maintaining a desired apex height and forward speed, the 
quadruped behavior is correlated to that of a monopod robot 
during stance. Simulation results show that the necessary 
periodic motion of both the body attitude and the reaction 
wheel during dynamic quadruped running is guaranteed, even 
in the presence of terrain compliance. 

II. QUADRUPED DYNAMIC MODEL 

We introduce a planar model of a quadruped consisting of a 
body, two hip-actuated compliant legs and a reaction wheel. 
The legs represent the hind and fore leg pairs (virtual legs). It 
is assumed that when a foot impacts the ground, a point 
contact occurs and that bulldozing effects can be neglected. 

Model description. The model shown in Fig. 1 consists of 
a main body with length 2d , mass mb  and moment of 
inertia (MoI) Ib  about its Center of Mass (CoM). Each leg 
CoM is in the middle of its length. Each virtual leg has mass 
ml , MoI Il , a prismatic compliant joint with stiffness k  and 
is driven by a hip actuator, i.e torques τ f  and τ h  for the fore 
and hind leg respectively. The reaction wheel is hinged at its 
CoM and has mass mr , radius of gyration R  and MoI Ir : 
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 Ir = mr ⋅R
2   (1) 

The damping coefficients related with each leg prismatic 
and rotational joints and the reaction wheel rotational joint 
are bl , bϕ  and br  respectively. The body position in the 
sagittal plane and the pitch angle are denoted by (x, y)  and 
θ  respectively. Each relative angle is denoted by ϕ , each 
absolute angle by γ , and each instantaneous length as l . The 
subscripts f  and h  correspond to the fore and the hind leg. 
The Fg, f , Fg,h  and Ft , f , Ft ,h  represent the vertical and 
tangential forces (subscripts g  and t  respectively), exerted 
on each foot by the compliant ground. 

 
Figure 1. The dynamic model of the quadruped robot. 

In deriving the equations of motion, the employed 
generalized coordinates include the body CoM position 
vector in the inertial frame (x, y) , the pitch angle of the body 
θ , the relative angles ϕ f , ϕh , the length of the two legs l f , 
lh , and finally the relative angle of the reaction wheel ϕ r . 
Then, the equations of motion take the following form, 

  M(q)q+C(q,q)= B τ+ J
T F   (2) 

where q  represents the configuration space as described 
above, M(q)  is a symmetric 8x8 mass matrix,  C(q,q)  is an 
8x1 vector containing gravity, centrifugal and Coriolis terms, 
B  assigns control inputs τ  to  q , and the Jacobian J  maps 
the external forces from the ground F  to q . 

Many researchers consider legs of zero mass or inertia, 
keeping the body pitching unaffected during flight [3]. This is 
a rather severe assumption that does not reflect reality, and 
therefore it is not used for the simulation of the robot’s 
motion here. Others control the pitch angle indirectly by 
driving the legs appropriately in stance or in aerial phase [7], 
[8]. However, this approach would require significant 
modifications in the analytically derived monopod controller, 
and the conclusions regarding stable locomotion on terrains 
with variable stiffness would be of no use here. 

As a zero pitch angle is required for successful pronking, 
here this angle is controlled in the aerial phase using a 
reaction wheel. More specifically, since the legs are not 
considered massless, the conservation of angular momentum 
introduces a nonholonomic constraint that dictates a body 
rotation, when the motors position the legs to the desired 
touchdown angles. As a consequence, the legs do not hit the 
ground at the same time, and this disturbance turns pronking 
into a complex bounding gait, to which the monopod 
controller cannot safely adapt. Although a reaction wheel is a 
secondary control, and thus an optional system load, it can be 
widely used in many tasks besides pronking, increasing the 

agility of general purpose legged machines. Therefore, we do 
not consider it as a special ad hoc device, but as a control 
input with wide applicability that can improve the 
performance of significantly underactuated legged robots. 

III. ACTUATOR MODEL 

In the literature, most theoretical works and simulations do 
not include motor models, i.e the actuators are considered 
ideal torque sources. Several other works just introduce limits 
on torque and speed in the form of a speed-torque 
characteristic for the maximum supply voltage [11]. 
However, such models still conceal important information 
and do not reflect reality. For example, as will be shown next, 
the most important limits forming the operating range of an 
actuator system come from the gearbox mechanical limits 
and the current/voltage limits of the motor servoamplifier. 

Defining the limits of the actuator. In this work, we focus 
on DC motors (brushed or brushless), since these are 
preferred in most robots that use electric actuation. In several 
applications, e.g. when backdrivability is required and thus a 
gearbox cannot be used, the operating range is bounded by 
the speed-torque characteristic corresponding to maximum 
supply voltage and by the current limit of the servoamplifier, 
see Fig. 2. However, in applications such as legged robotics, 
that demand significant torque in high speeds and thus need 
speed reduction, the actuator operating range is constrained 
mainly by the gearbox mechanical limits and the 
servoamplifier current/voltage limits. As a consequence, in 
many cases, a large region defined by the motor characteristic 
cannot be used and must be excluded in the analysis. 

 
Figure 2. Left: The operating range of a DC motor without a gearbox. 

Right: Limited operating range of a DC motor with a gearbox. 

More generally, the actual operating range of a drive train 
for such applications is hardly formed by the motor speed-
torque characteristic. In fact, by regulating the supply voltage 
appropriately, this range does not depend on the motor’s 
characteristic at all. It is noted that a DC motor can 
practically work at any voltage and the nominal voltage is 
just a reference, as long as the current remains within the 
thermal limits of the motor. For demanding loads, such as 
high torques in high speeds required in legged locomotion, an 
ideal supply voltage would be the one that defines a 
characteristic tangent to the limits of the gearbox to allow for 
maximum exploitation of the actuator, as shown in Fig. 2.  

Choice of the actuator reduction ratio. For a gearmotor 
with rotor MoI Irotor , gearbox reduction ratio n  and MoI 
Igear  that drives a load with MoI Iload , the total MoI Ieq  is, 

 Ieq = Iload + Igear + n
2Irotor   (3) 

The importance of (3) is apparent when choosing a reduction 
ratio to be used for legs that have significantly low MoI Iload . 
If a large reduction n  is chosen, the total MoI would be 
primarily determined by the large term n2Irotor . This will 
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result in greater disturbance on the main body attitude due to 
the conservation of angular momentum. Thus, the choice of 
the gearbox reduction ratio coupled with each hip actuator is 
a tradeoff problem between the required torques to push the 
body forward and the minimization of the total MoI Ieq  so 
that body attitude disturbances during flight are minimized. 
On the other hand, the drive train of the reaction wheel must 
have a large total MoI Ieq  to effectively adjust the body’s 
pitch angle and reject any disturbances from leg positioning. 

Virtual Actuators. Although modeling and analysis so far 
were performed using virtual legs, the previous discussion 
concerning the actuator model is valid only if a single 
actuator is used for each separate load. However, a virtual leg 
is in fact driven by two actuators working in parallel, e.g. the 
fore left motor and the fore right motor. Therefore, we 
introduce the concept of a virtual actuator, describing an 
actuator that is equivalent to two parallel ones and can be 
included safely in the analysis. The characteristics of these 
two identical motors have to be combined to yield the 
operating range of a virtual actuator. Combining the speed-
torque lines of two motors in parallel will result in a 
characteristic with half the slope of that of the single motor as 
shown in the left of Fig. 3. Moreover, when a servoamplifier 
and a gearbox are also considered, the operating range of the 
virtual actuator occurs as a synthesis of the operating ranges 
of the two actuators, as depicted in the right of Fig. 3. These 
diagrams have the typical form given by most DC motor 
manufacturers, including a continuous operation region (low 
torque/current) and a short-term one (high torque/current). 

 
Figure 3. Speed-torque characteristic synthesis for two identical DC motors 

working in parallel into the equivalent of a virtual motor. Left: Speed-

torque characteristic curves. Right: Operating ranges. 

IV. FOOT-TERRAIN INTERACTION 

To describe realistically the leg interaction with the 
deformable ground during its motion, the viscoplastic impact 
model proposed in [4] is employed. According to this model, 
the interaction force Fg  at stance instance i  is, 

 

 

Fg
i yg , yg( ) =

Fc
i = λc

i ⋅ kg +bg ⋅ yg( ) yg − yei−1( )n , yg ≥ 0
Fr
i = λr

i ⋅ kg +bg ⋅ yg( ) yg − yei( )n , yg < 0

⎧

⎨
⎪

⎩⎪
 (4) 

where subscripts c , r  stand for compression and restitution 
respectively, ye  

is the reached impact depth, kg  and bg  are 
the stiffness and damping coefficients respectively, n  in the 
case of Hertzian non-adhesive contact is 1.5, and yg  is the 
penetration depth. The equivalent stiffness kg  is related to 
the materials into contact, [12]. Damping is considered as a 
parameter affected by the stiffness [13], and given by 

 bg =1.5 ⋅ ca ⋅ kg   (5) 

where throughout this work ca = 0.2 , without affecting the 
generality of the conclusions. The Coefficient of Permanent 

Terrain Deformation λ  accounts for the permanent 
deformation during successive impacts on the same 
horizontal point, and since the ground becomes stiffer during 
restitution, λr

i ≥ λc
i ≥1 . The index i  is used to identify an 

impact instance (stance), as the terrain inherits the 
characteristics from the previous impact instant. The 
coefficient recursive form and proposed model is presented in 
[4]. Finally, the depth ye

i  at the ith  impact can be calculated 
using the maximum compression, yc,max

i , as follows, 

 ye
i = yc,max

i ⋅ 1− λc
i λr

in( )+ yei−1 ⋅ λc
i λr

in( )   (6) 

where ye
0 = 0  for consistency. 

Friction. It is important to examine whether the foot of 
each leg, as it touches the ground, slips or sticks. For this 
reason, a friction description is required. Here, the Classical 
Coulomb friction model is used, which is an approximation 
of the standard Slip-stick friction model in terms of 
eliminating discontinuities at the static friction region that are 
unacceptable for simulation purposes [14]. This is achieved 
by adding a velocity threshold ue , below which the foot is 
considered to stick. The friction force Ft  is, thus, given by 

 

 

Ft =
−sgn xg ⋅Fg ⋅ μc + μs −μc( ) ⋅ e

−
xg
us

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
, xg > ue

−sgn xg ⋅ μs ⋅Fg( ) ⋅ xg ⋅ue−1 ,    xg ≤ ue

⎧

⎨

⎪
⎪

⎩

⎪
⎪
⎪

  (7) 

where  xg  is the velocity component of the foot that is 
parallel to the tangential plane between the foot and the 
ground, Fg  is the normal to the same plane interaction force 
from (4), μc  is the Coulomb (kinetic) friction coefficient, μs  
is the static friction coefficient and us  is the Stribeck effect 
parameter. Without affecting the generality of the 
conclusions, we assume that ue =10

−3m/s  and us =10
−2m/s . 

V. CONTROL METHODOLOGY 

In [4], a novel controller for a monopod hopping robot on 
compliant terrains, called Extended Multipart (x-MP), was 
presented. The controller is capable of achieving and 
retaining a desired forward speed and main body apex height 
on different terrains, with a single actuator located at the 
robot hip. In [4], it was shown also that this controller 
outperforms controllers designed for stiff terrains, as the 
terrain compliance increases. The approach taken in this 
paper is to use the main principle of this controller and extend 
its applicability to quadruped controller design.  

The quadruped is required to run in a pronking gait, in 
which both the fore and hind virtual legs hit the ground at the 
same time. The controller acts just after both legs have left 
the ground, i.e. when the ground phase of stride j −1  
terminates and the flight phase of stride j  begins. At that 
moment, it calculates a desired touchdown relative angle ϕ td

j  
for both legs and two constant torques τ s, f

j  and τ s,h
j  to be 

applied by the fore and hind hip actuator respectively during 
the ground phase of stride j  so that a specified forward 
speed  xdes  and main body apex height hdes  is reached. The 
controller acts in several steps as described in detail next. 

Estimation of equivalent controller parameters. The first 
controller action is to map the behavior of the quadruped 
robot on compliant terrain, to a simple equivalent model of a 
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monopod robot, with a single actuator at its hip, on stiff 
terrain, as shown in Fig. 4, by calculating an equivalent mass, 
stiffness and damping coefficients ′M , ′k  and ′b  
respectively. To achieve this, it is assumed that in pronking 
both legs touch and leave the ground at the same time 
without requiring any body pitching motion. The equivalent 
model is used for calculating the desired touchdown angle 
ϕ td

j  and constant stance torques τ s, f
j  and τ s,h

j . 

 
Figure 4. The equivalent monopod used in describing quadruped pronking. 

Since the mass ml  of each leg is significantly smaller 
than the combined mass of the main body mb  and of the 
reaction wheel mr , the equivalent mass ′M  that will be used 
in the control algorithm is given by, 

 ′M = mb +mr  (8) 

Following the methodology in [4], the calculation of ′k  
and ′b  is based on previous stride response and energy losses 
due to damping and ground dissipation. Specifically, the 
duration Δts

j−1  of the ground phase of stride j −1  is taken 
equal to half of the natural period of a harmonic oscillation. 
Thus, ′k  is found as, 

 ′k = π Δts
j−1( )2 ⋅ ′M   (9) 

Taking into account that on a realistic terrain, there is no 
guarantee that the robot legs touch or leave the ground at 
exactly the same time, as small deviations may occur, the 
duration time Δts

j−1

 
for the quadruped robot is considered to 

be equal to the time duration of the hind leg stance; the time 
duration of the front leg stance could have be chosen instead. 

On the other hand, the equivalent damping ′b  is 
calculated as in [4], using force sensors located at each foot, 
and an estimate of the damping parameters to determine the 
energy Egdis

j−1  dissipated by the ground and the energy Edamp
j−1  

dissipated in the robot joints during the stride j −1 . 
Calculation of touchdown angle and constant stance 

torque. By calculating ′M , ′k  and ′b , the quadruped robot 
behavior during pronking on compliant terrain is fully 
mapped to the behavior of a monopod hopping robot running 
on stiff terrain. Thus, a control method for this monopod 
robot would produce the same response in the quadruped 
robot. For this reason, the next action of the x-MP controller 
is to determine a desired touchdown angle ϕ td

j  and constant 
torque τ s

j  to be applied during the next stance phase, so as to 
regulate the forward speed and apex height of the equivalent 
monopod in Fig 4. To do so, the controller exploits the 
hopping robot dynamics during stance, described by, 

   ′M ⋅ x+ ′k ⋅ L − lnd( ) ⋅sϕ − ′b ⋅ lnd ⋅sϕ = −τ s
j ⋅ lnd

−1 ⋅cϕ   (10) 

   ′M ⋅ y+ g( )− ′k ⋅ L − lnd( ) ⋅cϕ + ′b ⋅ lnd ⋅cϕ = −τ s
j ⋅ lnd

−1 ⋅sϕ   (11) 

where  cϕ = cosϕ ,  sϕ = sinϕ , lnd  is the instant length of the 
monopod at any time and ϕ  is the monopod’s relative angle 
which, since there is no pitching motion of the main body, 
coincides with its absolute angle. By integrating (10) and 
(11) with the method presented in [15], the touchdown angle 
ϕ td

j  and constant torque τ s
j  are extracted, so that the 

monopod reaches a desired forward speed  xdes  and body 
apex height hdes . It is noted, though, that the monopod has 
one actuator while the quadruped robot has two actuators. For 
this reason, the calculated torque τ s

j  is equally distributed 
between each actuator so that the commanded torques at the 
fore and the hind hip actuator, τ s, f

j  and τ s,h
j , are set as, 

 τ s, f
j = τ s,h

j = 0.5 ⋅τ s
j   (12) 

Following these calculations, the legs are servoed to the 
touchdown relative angle ϕ td

j  during the flight phase using a 
PD controller as described in [4]. After the touchdown of 
each leg, which is determined using a force sensor at each 
robot foot, the constant torques τ s, f

j  and τ s,h
j  are applied. 

Control of the reaction wheel. To achieve the desired 
pronking gait, both legs must touch the ground at the same 
time instant. Since the touchdown angle is the same for both 
the fore and the hind leg, this can be ensured by regulating 
the body pitch angle to zero during the flight phase in order 
to reject any deviations in the body attitude occurring due to 
the conservation of angular momentum while positioning the 
legs. To this end, a PD controller is employed as follows 

 
 
τ r

f = kp,r ⋅ θdes −θ( )+ kd ,r ⋅ θdes −θ( )   (13) 

where θdes = 0  and  θdes = 0  are the desired pitch angle and 
pitch velocity respectively. The gains are chosen so that the 
response is fast without overshooting. 

However, the torque τ r
f  applied during the flight phase 

results in acceleration of the reaction wheel, which may lead 
to rotational speed saturation or failure of its gearbox. For 
this reason, the reaction wheel must be decelerated during the 
ground phase, when both legs are in contact with the ground 
and there is no need for pitch control. Thus at double stance, 
a virtual brake is applied according to the following equation 

  τ r
s = −kd ,r ⋅ϕ r   (14) 

Sensing. The controller uses data from force sensors 
yielding the ground reaction forces, from two encoders at 
each leg that measure the relative angle ϕ  and leg length l , 
and estimates of the body position and attitude (x, y,θ )  using 
the robot model fused with data from an inertial sensor, [4]. 
No additional sensor for the terrain properties is required. 

VI. RESULTS 

To evaluate the controller during pronking and under 
alternative scenarios, a number of simulations were carried 
out. The equivalent stiffness kg  between the materials in 
contact (i.e. foot and ground) was used [12], where the 
properties of various terrains were found in [16]. An ether 
polyurethane foot was selected with Young’s modulus 
E =100MPa . As an example, the equivalent stiffness 
between this material and granite with E = 50GPa  is 
kg ≈ 450,000N m . Hence, three main categories of terrains 
were examined: soft ground with kg = 8 ⋅10

4 N m , μs = 0.5 ,
μc = 0.4 , moderate ground with kg = 2 ⋅10

5 N m , μs = 0.6 , μc = 0.5 , and stiff ground with kg = 4 ⋅10
5 N m , μs = 0.7 , μc = 0.6 . The acceleration of gravity was g = 9.81m / s2 . 
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In all cases, the quadruped parameters were: mb =10kg , 
Ib =1.0kgm

2 , d = 0.27m , ml = 0.6kg , Il = 0.0045kgm
2 , 

mr =1.0kg , R = 0.25m , L = 0.30m , k =12,000N/m . The 
damping coefficients were bl = 2Ns/m , bϕ = 0.2Nms  and 
br = 0.1Nms . The same DC motor was used for both legs 
and the reaction wheel but with different reduction ratios, 
according to the design principles discussed in Section III. In 
more detail, the motor MoI was Irotor = 33.3gcm

2 , with a 
speed-torque gradient 869 rpm/mNm  and stall torque 
1020 mNm . To supply large torques, the wheel motor 
gearbox had a reduction ratio of 51:1, Igear = 0.7gcm

2  and 
maximum output torque τmax = 7.5 Nm , while the gearbox 
used for each leg actuation had a reduction ratio of 14:1, 
Igear = 0.7 gcm

2  and maximum permissible torque 
τmax = 3.75 Nm . The permissible input speed for both 
gearboxes was 8000 rpm, and the maximum permissible 
motor servoamplifier current was 12 A. For the reaction 
wheel controller, the values of kp,r = 700  and kd ,r = 40  were 
selected as they allow the controller to be fast enough to 
change the pitch angle before the next touchdown, while 
avoiding excessive oscillations and overshooting. 

The simulations were performed in Matlab using ode23s 
with absolute tolerance 10−5 , relative tolerance 10−4  and 
maximum step 10−4 . To minimize the zero-crossing 
arithmetic problems created by the numerical stiffness, the 
impact was considered over when the interaction force 
between the foot and the terrain was below 5N. 

Controller performance with varying desired forward 
velocity. Fig. 5 displays the controller response on compliant 
terrain with varying desired forward velocity and constant 
desired apex height. As can be seen, the controller closely 
follows the commanded objectives, with some deviation of 
around 0.08 m/s in the forward velocity and almost no error 
in the desired main body apex height. Apart from that, the 
controller successfully achieved to generate a pronking gait, 
as shown in the Hildebrand diagram, depicted in Fig. 6. It can 
be concluded that both the fore and the hind leg hit the 
ground together and take off with negligible time difference 
(of about 0.85% of stride duration), mainly caused by the 
reaction wheel deceleration during the ground phase. 

 

 
Figure 5. Controller performance on rough terrain with varying desired 

forward velocity: (a) Main Body Height, (b) Forward Velocity. 

 
Figure 6. Hildebrand diagram of the quadruped robot during one stride. 

Controller performance with varying desired main body 
apex height. In Fig. 7 the controller response on compliant 
terrain with varying desired apex height and constant desired 
forward velocity is shown. Again, the controller manages to 
achieve the desired objectives with satisfactory accuracy. 

 

 
Figure 7. Controller performance on rough terrain with varying desired apex 

height: (a) Main Body Height, (b) Forward Velocity. 

Controller performance with varying terrain properties. 
Finally, the controller was tested on several terrain types with 
different compliance and permanent deformations and was 
commanded to retain a constant desired forward velocity of 
0.6 m/s and main body apex height of 0.32 m, as shown in 
Fig. 8. During each part of the designated path, the contact 
stiffness and shape deformation (shown by the max
λ = 1+ a i( )⎡⎣ ⎤⎦  in the figure) were changed abruptly. The 
controller adapts quickly to each terrain and follows the 
commanded objectives, as illustrated in Fig. 8. Small 
deviations occur on severely compliant terrains with large 
permanent deformations, where the motors reach more easily 
their saturation levels. These results provide an excellent 
example of how gearbox and servoamplifier limits really 
affect robot motion. The mapping from the quadruped to an 
equivalent monopod is not perfect; such deviations are more 
visible on more compliant terrains. 

Apart from the controller performance under different 
scenarios, it is necessary to examine whether the motion of 
the reaction wheel was stable from stride to stride. This is a 
crucial factor for the total system stability, as a constant 
reaction wheel acceleration could result in motor saturation 
and, eventually, in total gait failure. For the same reasons, the 
main body pitch angle must perform an oscillation around 
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zero, so that a pronking gait is preserved. Both of these 
requirements were met by the controller, as shown in Fig. 9. 

 

 
Figure 8. Controller performance on different terrains with specified desired 

velocity and apex height: (a) Main Body Height, (b) Forward Velocity. 

 
Figure 9. Evolution of the reaction wheel angle rate and the body pitch 
angle rate while traversing moderate terrain with small deformations. 

Finally, it is useful to depict graphically whether and 
when actuators reach saturation and, more importantly, 
whether all their operating points lie within the specified 
limits. As an example, Fig. 10 depicts the results for the 
reaction wheel and the front leg actuator during the run 
presented in Fig. 8. As can be seen, no gearbox torque-speed 
bounds are violated; the reaction wheel was torque saturated 
occasionally while decelerating. 

 
Figure 10. Operating points and limits of: (a) the reaction wheel actuator 

and (b) the front leg actuator. 

The front leg actuator reached saturation at the beginning of 
each flight interval, when trying to position the leg forward; 
however, leg positioning was successful. 

VII. CONCLUSION 

In this work, the motion of a quadruped robot during 
pronking was examined using our controller for even 
compliant terrains. To retain a desired pitch during pronking, 
a reaction wheel was employed. The dynamics of the motor 
drivetrains for both the leg hip joints and the reaction wheel 
were incorporated, and the concept of virtual actuators was 
introduced that must be considered in models that use virtual 
legs. The controller developed for the monopod case, was 
modified appropriately for the quadruped robot. Simulation 
results showed good performance in reaching the apex height 
and forward velocity goals on various terrains, thus 
demonstrating that the developed controller is effective. 
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