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ABSTRACT

Space manipulators mounted on an on-o� thruster-

controlled base are envisioned to assist in the assembly

and maintenance of space structures. When handling

large payloads, manipulator joint and link 
exibility be-

come important, for they can result in payload-attitude

controller, fuel-replenishing dynamic interactions. In

this paper, the describing-function concept is adapted

to be used in conjunction with the root-locus concept,

thus providing a di�erent picture of the problem and

helping in the control system design. This novel adap-

tation of the describing-function method has shown to

give better physical insight in the understanding of the

dynamic interaction problem and the design of control

schemes to eliminate it.
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INTRODUCTION

Robotic devices in orbit will play an important role

in space exploration and exploitation. Their mobil-

ity can be enhanced by mounting them on free-
ying

bases, controlled by on-o� thrusters. Such robots

introduce a host of dynamic and control problems

not found in terrestrial applications. When handling

large payloads, manipulator joint or structural 
exi-

bility becomes important and can result in payload-

attitude controller, fuel-replenishing dynamic interac-

tions. Such interactions may lead to control system

instabilities, or manifest themselves as limit cycles [1].

The CANADARM-Space Shuttle system is the only

operational space robotic system to date. Its Reac-

tion Control System (RCS), which makes use of on-

o� thrusters, is designed assuming rigid-body motion,

and using single-axis, thruster switching logic based on

phase-plane techniques. This approach is common in

the design of thruster-based control systems. However,

the 
exible modes of this space robotic system have

rather low frequencies, which continuously change with

manipulator con�guration and payload, and can be ex-

cited by the RCS activity. Currently, the method for

resolving these problems consists of performing exten-

sive simulations. If dynamic interactions occur, cor-

rective actions are taken, which would include adjust-

ing the RCS parameter values, or simply changing the

operational procedures [2]. The describing-function

method has also been used to study this highly non-

linear problem due to the use of on-o� thrusters. The

method was used to analyze the problem of payload

deployment by means of a tilt table [3]. Stability maps

were obtained and compared to simulation results to

validate the describing-function analysis. On-o� pulse

modulator attitude control system were designed in [4]

using the describing-function analysis for a spacecraft

having large 
exible solar arrays. They used the rel-

ative stability margin, with respect to the limit-cycle

condition of a structural mode, as a measure of the

robustness of the nonlinear control system. Using the

same idea, it was shown in [5] that the describing-

function analysis can be utilized for practical control

design problems such as 
exible spacecraft equipped

with pulse-modulated reaction jets.

Although the describing-function technique is a

good tool to analyze the stability of this kind of sys-

tems, it gives very little physical insight in the nature

of the problem and the design of new control schemes

to eliminate it. In this paper, the describing-function

concept is adapted to be used in conjunction with the

root-locus method well known in linear control theory.

This novel adaptation of the describing-function con-

cept has been used in [6] to design three new control

schemes that can eliminate the problem of dynamic

interactions. Its interest comes with the physical in-

sight it can provide on the nature of the problem, thus

allowing the design of more e�cient control schemes.

SYSTEM DESCRIPTION

Dynamics Modeling

The dynamics model of the N -
exible-joint space ma-

nipulator depicted in Fig. 1(a) was developed using a

Lagrangian formulation under the assumption that all

link and joint 
exibilities are lumped at the joints [6].

This is reasonable, since joint 
exibility is more signif-



Figure 1: (a) A space manipulator system; (b) A sim-

pli�ed two-mass system.

icant than link 
exibility in this kind of system. Each


exible joint is modeled as a torsional spring in parallel

to a torsional dashpot. Using linearization techniques,

the natural frequency and damping ratio expressions

for this system were obtained as functions of the con-

�guration of the manipulator, [6].

However, the dynamics of this space manipulator is

rather complicated; it is preferable to employ a simpli-

�ed model to analyze the problem stated in the intro-

duction. We can replace the manipulator of Fig. 1(a)

with an equivalent two-mass-spring-dashpot system,

as shown in Fig. 1(b). By a proper selection of the

spring sti�ness k and the damping coe�cient c, the
resonant frequency of the simpli�ed system can be

matched to the �rst one of the original system. There-

fore, a similar relative motion of the payload with re-

spect to the base can be obtained.

The equations of motion for the system shown in

Fig. 1(b) can be readily derived as

M1�y1 + c( _y1 � _y2) + k(y1 � y2) = f(t) (1a)

M2�y2 � c( _y1 � _y2)� k(y1 � y2) = 0 ; (1b)

where M1 is the mass of the base, M2 the mass of the

payload, y1 the position of the base, y2 the position of

the payload, k the spring sti�ness, c the damping coef-

�cient, f(t) = Bu, with B the magnitude of the force

developed by the thrusters, and u is the command of

the thrusters, either +1, 0 or �1.
The overall motion of the system can be decom-

posed into a rigid-body motion of the system center

of mass (CM), and a 
exible-body motion around the

center of mass, de�ning the resonant frequency !n, the

damping ratio �, and the reduced mass � as

!n =

s
k

�
; � =

c

2
p
�k

; � =
M1M2

M1 +M2

: (2)

From Eq.(2), we obtain the system sti�ness k and

damping coe�cient c, as

k = �!2

n; c = 2��!n : (3)

Therefore, using Eq.(3), k and c can be chosen to

match a speci�c resonant frequency !n and a damping

ratio � for given masses M1 and M2.

Figure 2: (a) Switching logic in the error phase plane;

(b) Controller block.

The transfer function Gp(s) mapping the input u
into the base position y1, namely

Y1(s) = Gp(s)U(s) (4)

can be derived as

Gp(s) = 

(1 + �)s2 + 2�!ns+ !2

n

s2(s2 + 2�!ns+ !2
n)

(5)

where the mass ratio � and the acceleration of the CM


 are given by

� = M2=M1; 
 = 
0=(1 + �) (6)


0 being the nominal acceleration that can be provided

by the thrusters when � = 0.

Controller Structure

The technology currently available does not allow the

use of proportional thruster valves in space, and thus,

classical PD and PID control laws cannot be used;

spacecraft attitude and position are controlled by on-

o� thruster valves, that introduce nonlinearities.

The usual scheme to control a spacecraft with on-

o� thrusters employs the error phase plane, de�ned as

having the spacecraft attitude error e and error rate _e
as coordinates. The on-and-o� switching is determined

by switching lines in the phase plane and can become

complex, as for example, the phase plane controller of

the Space Shuttle [2]. To simplify the switching logic,

two switching lines with equations e + � _e = �� have

been used, as shown in Fig. 2(a). The deadband limits

[��, �] are determined by attitude limit requirements,

while the slope of the switching lines, by the desired

rate of convergence towards the equilibrium and by the

rate limits. This switching logic can be represented as

a relay with a deadband, where the input is e + � _e,
the left-hand side of the switching-line equations, see

Fig. 2(b).

To compute the input to the controller, the position

and the velocity of the base are required and can be ob-

tained from sensors. However, it can happen that only



Figure 3: Model with a classical rate estimator.

the attitude is available and then, the angular velocity

must be estimated. As shown in [7], the use of sen-

sors to obtain the rate of the base may deteriorate the

performance of the system due to the high-frequency

�ltering requirements. Here, we consider that only the

attitude is available from sensors, and, hence, to ob-

tain the velocity, estimators are used.

In this paper, a controller-plant-estimator con�gu-

ration similar to the one used on the Space Shuttle is

employed [2]. A di�erentiator combined with a second-

order �lter is used to obtain a velocity estimate, as

shown in Fig. 3. The di�erentiation of a noisy signal

is not recommended because it ampli�es noise. How-

ever, in this case, it is possible to use a scheme where

only the 
exible part of the motion needs to be dif-

ferentiated. This means that, at the limit, for a rigid

system, no di�erentiation is necessary. This state es-

timator can give very good results when 
exibility is

low. The di�erentiator-�lter is given by sGse(s) where

Gse(s) =
!2

se

s2 + 2�se!ses+ !2
se

(7)

The attitude feedback is also low-pass-�ltered using a

second-order �lter represented by Gf (s)

Gf (s) =
!2

f

s2 + 2�f!fs+ !2

f

(8)

For this �lter, we use !f = 0:47 rad/s and �f = 0:707,
while, for the di�erentiator-�lter, we use values that

correspond to the ones used on the Space Shuttle [2],

namely, !se = 0:2513 rad/s and �se = 0:707.

FREQUENCY-DOMAIN ANALYSIS

Describing-Function Method

Since the attitude controller assumes use of on-o�

thrusters, which are nonlinear devices, the system can-

not be adequately analyzed through the application of

linear analysis methods. This problem is solved using

the describing-function method, which can predict the

existence of limit cycles in nonlinear systems [8, 9].

In order to use this method, the system under study

must be partitioned into a linear and a nonlinear part.

Figure 4: A nonlinear system analyzed with describing

functions.

Then, it is transformed into the con�guration shown in

Fig. 4. G(j!) is the frequency response of all the lin-

ear elements in the system and N(A;!) is the describ-
ing function of the nonlinearity, which is tabulated in

many books, e.g., in [9].

The characteristic equation of the system depicted

in Fig. 4 can be written as

G(j!) = � 1

N(A;!)
(9)

The reader is refered to [8] and [9] for a detailed

description of the method. In summary, if a given set

of A and ! is a solution of Eq.(9), then the system

exhibits a limit cycle of amplitude A and frequency !.
If the above equation has no solution, then the non-

linear system has no limit cycle. A convenient way

to solve Eq.(9) consists of plotting both sides of the

equation in the complex plane by varying A and !,
and observing whether the two curves intersect or not.

An intersection point will provide the corresponding

values of A and !. Furthermore, one has to investi-

gate the stability properties of the limit cycle and the

general behavior of the system [9]. For example, Fig. 5

depicts three typical describing-function plots encoun-

tered in this work, where the describing function N of

the relay is a function of the gain A only. Figure 5(a)

is typical of an unstable system where the motion di-

verges, none of the intersection points representing a

stable limit cycle. Figure 5(b) depicts a system that

sustains a limit cycle of amplitude A and frequency

! due to the dynamic interactions. Finally, Fig. 5(c)

shows a stable case where the motion reaches a small

unavoidable limit cycle. Figures 5(a) and (b) both cor-

respond in high thruster activity. This behavior is not

desirable in space missions, and should therefore be

classi�ed as unstable.

Root-Locus Method

Alternatively, in this paper, the describing-function

concept was adapted for the analysis of space robotic

systems controlled with on-o� thrusters via the root-

locus method. The characteristic equation of the sys-

tem, eq.(9), can be written as

q(s) +N(A;!)p(s) = 0 (10)

where p(s) and q(s) are respectively the numerator

and denominator of the transfer function G(s) of all
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Figure 5: Typical describing-function plots: (a) Un-

stable system; (b) Limit-cycling system; and (c) Stable

system.

the linear elements of the system. Equation (10) has

the standard form used for the root-locus concept by

replacing the varying parameter K by the describ-

ing function of the nonlinear element of our system

N(A;!). The varying parameters thus become the

amplitude A and the frequency ! of the assumed limit

cycle. For the case where the describing function is

only a function of the amplitude A, which is the case

for a relay nonlinearity, and thus for the case under

study in this paper, the locus of the closed-loop poles

in the complex plane is obtained by varying solely this

parameter. We thus have

q(s) +N(A)p(s) = 0 (11)

Moreover, let us assume that the i-th root of Eq.(11)

is

si = �i + j!i (12)

when A has the value Ai. Thus, from Eq.(11), we have

q(�i + j!i) +N(Ai)p(�i + j!i) = 0 (13)

We can further assume that for the given Ai, the root

si is on the j!-axis. Hence,

�i = 0 (14)

Figure 6: Stability prediction using the root-locus

method. (a) Unstable limit-cycling system, (b) Stable

system, (c) Unstable system with diverging motion.

and Eq.(13) becomes

q(j!i) +N(Ai)p(j!i) = 0 (15)

which can be written as

p(j!i)

q(j!i)
= G(j!i) = �

1

N(Ai)
(16)

Equation (16) thus has the same form as Eq.(9) and

hence corresponds to the intersection of the two loci

G(j!) and �1=N(A). Therefore, when a branch of

the root-locus plot crosses the j!-axis at a certain !i,

for a given value Ai, then the system exhibits a limit

cycle of amplitude Ai and frequency !i. The stabil-

ity of this limit cycle can be assessed by considering

points of the loci near the intersection point. For the

root-locus method applied to nonlinear systems, the

following Limit Cycle Criterion was developed:

Limit Cycle Criterion: Each intersection point of a

locus of the root-locus plot with the j!-axis corresponds
to a limit cycle. Assuming a stable G(s), if points near
the intersection and along the increasing-A side of the

locus are in the left-half plane, then the correspond-

ing limit cycle is stable. Otherwise, the limit cycle is

unstable.

For example, points B of Fig. 6(a) correspond to

an unstable limit cycle, and points C correspond to a

stable one.

On the other hand, if none of the loci intersects

the j!-axis, the system is stable if all the loci are in

the left-half plane, and it is unstable with a diverging

motion if one or more of the loci is completely in the

right-half plane, which means that there exists at least

one pole of the closed-loop system with its real part

being positive, for any value of A. For example, as-

suming that G(j!) is stable, Fig. 6(b) depicts a stable
system while Fig. 6(c) an unstable one.

EXAMPLE: THE TWO-MASS SYS-

TEM

The interaction problem identi�ed in the introduc-

tion is analyzed here using the describing-function and

the root-locus methods, for the two-mass system of

Fig. 1(b). For the classical rate estimator of Fig. 3,



the transfer function of the linear elements Grate(s)
(Fig. 4) is derived in [6] and is given by

Grate(s) = e��sGp(s)
�
Gf (s) + �sGse(s)

�
+
�


s

�
1�Gse(s)

�
(17)

where Gp(s), Gse(s) and Gf (s) are de�ned in Eqs.(5),

(7), and (8), respectively. The plant transfer function

is represented by Gp(s), while Gf (s) and Gse(s) are
the transfer functions of second-order �lters. Finally,

for the root-locus analysis, the delay � is represented

as a third-order Pad�e approximation, namely,

e��s =
2� �s+ �2s2=2� �3s3=6

2 + �s+ �2s2=2 + �3s3=6
(18)

We consider a con�guration of a three-link version

of the manipulator of Fig. 1(a) given by

�1 = 120�; �3 = 90�; �5 = 105�

and two di�erent payloads

i) � = 0:05 ii) � = 0:3

Considering, link lengths and mass properties of this

system based on the CANADARM/Space Shuttle sys-

tem, the �rst natural mode and damping ratio of the

system for these � values are obtained in [6] as

i) !1 = 2�(0:096) rad=s; �1 = 0:015

ii) !2 = 2�(0:053) rad=s; �2 = 0:008

Therefore, we consider the two-mass system with

two sets of parameters:

i) � = 0:05; !n = 2�(0:096) rad=s; � = 0:015

ii) � = 0:3; !n = 2�(0:053) rad=s; � = 0:008

Moreover, for this study, we choose

� = 5 s; � = 0:01 m; 
0 = 0:01 m=s
2
; � = 0:1 s

The plots obtained using the describing-function

technique outlined above are displayed in Fig. 7(a) for

the � = 0:05 case and in Fig. 8(a) for the � = 0:3 case.
Similarly, the root-locus plots obtained using the root-

locus analysis with the amplitude A of the predicted

limit cycle as the varying parameter, are displayed in

Figs. 7(b) and (c), and in Figs. 8(b) and (c), respec-

tively, for the � = 0:05 case and the � = 0:3 case.

From Fig. 7(a), it is clear that the system is stable

since none of the points of the �1=N(A) locus is en-
circled by the G(j!) locus. The same conclusion is

obviously obtained by looking at Figs. 7(b) and (c),

since none of the closed-loop poles lies in the right-

half plane. Obviously, Figs. 7(a){(c) correspond to

two di�erent pictures of the same problem.
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Figure 7: Theoretical analysis with the classical rate

estimator for the � = 0:05 case: (a) describing-

function plot; (b) root-locus plot; and (c) root-locus

plot (zoom).

On the other hand, by looking at Fig. 8(a), we see

that the system is unstable and will be limit-cycling

with a high amplitude motion, since the �1=N(A) and
G(j!) loci intersect, the intersection point correspond-
ing to a stable limit cycle.

The same conclusion is drawn when looking at

Figs. 8(b) and (c), where two loci go into the right-

half plane, thus corresponding to positive closed-loop

poles, and hence, to an unstable system.

It is very interesting to compare Figs. 7(b) and (c)

with Figs. 8(b) and (c). We know that the e�ect of in-

creasing the payload, or equivalently, of �, is to lower

the natural frequency of the system, and thus, the

poles and zeros corresponding to this frequency move

towards the real axis in the root-locus plot, namely,

those in the upper right part of Figs. 7(c) and 8(c).

From Fig. 7(c), it is apparent that these poles and ze-

ros do not interfere with those of the �lters Gf (s) and
Gse(s). However, as � increases, the locus completely

changes and the dynamics of the plant interferes with
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Figure 8: Theoretical analysis with the classical rate

estimator for the � = 0:3 case: (a) describing-function
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(zoom).

the dynamics of the �lters, as shown in Fig. 8(c), the

result being that two loci cross the imaginary axis into

the right-half plane. From this analysis, it becomes

clear that any controller designed to avoid such in-

terference would improve the system stability. This

analysis using the root-locus plots is very important

in understanding the problem at hand and in �nding

solutions to eliminate it. This new design tool was

used in [6] to develop three new estimation schemes

that solve the problem of dynamic interactions.

CONCLUSION

This work examined possible dynamic interactions

between the attitude controller of a spacecraft and

the 
exible modes of a space manipulator mounted

on it. Using a simpli�ed model of the plant, namely,

a two-mass system, the describing-function method

was used to investigate the stability of the system. A

novel adaptation of this analysis method for nonlinear

systems was presented. This adaptation uses the de-

scribing functions in conjunction with the root-locus

method. It has the advantage of providing a di�erent

picture of the problem resulting in better physical in-

sight in the understanding of the dynamic interaction

problem. It also provides a valuable tool for the design

of new control schemes to eliminate that problem.
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