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Abstract— Gait analysis is essential in many scientific fields;
to study it marker-based or markerless motion capture (Mo-
Cap) techniques are used. The latter have significantly benefited
from the recent rise of research in deep learning (DL) and its
applications on human mesh generation. However, insufficient
and suboptimal camera viewpoint selections often lead to
low-grade human mesh geometries. This paper presents an
approach to consistently obtain accurate human meshes using
DL-based avatar reconstruction algorithms (ARAs). Our frame-
work provides a systematic approach, utilizing a simulated
environment to inform decisions on the number of cameras
and their spatial configuration to achieve optimal reconstruction
results. These results are enhanced through mesh evaluation,
mesh alignment, and surface reconstruction to remove poorly
formed geometries and artifacts. Additionally, we present a
gait analysis tool, tested in simulation and reality (Fig. 1), that
detects gait phase changes, extracts the significant human body
joint angles and recreates the animation of the gait cycle in 3D
space. The proposed approach is open-source, adjustable, and
applicable to various research contexts where gait analysis is
essential.

I. INTRODUCTION

Gait analysis is an integral tool in many scientific fields,
from clinical diagnostics to biometric security and sports per-
formance optimization [1]. It acts as a diagnostic instrument
for analyzing musculoskeletal and neurological conditions,
providing insights valuable for the development of treatment
plans [2]. The metrics used by gait analysis are objec-
tive and quantifiable, providing researchers with a deeper
understanding of human biomechanics, with applications
in technique refinement and injury prevention [3]. Lastly,
biometric characteristics such as the gait cycle are unique
and crucial in identification and verification tasks, with high
accuracy and resistance to impersonations [4].

The process of gait analysis involves several key steps,
crucial in accurately capturing, analyzing, and interpreting
motion data. The data are acquired through MoCap systems,
preprocessed to remove any noise or artifacts, and analyzed
using dedicated software [5], to extract gait parameters such
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Fig. 1: Experimental Setup at CSL NTUA.

as the stride length, the step width, the ground reaction
forces, etc. [6].

Traditionally, gait analysis has relied on marker-based
MoCap systems, force plates, and video analysis, with sys-
tems like Optitrack, Qualisys, and Vicon at the forefront
[7]. While accurate, these systems are expensive and require
specialized equipment as well as trained experts to operate
them. Conversely, markerless MoCap approaches might be
easier to operate but lack specialized capabilities such as
gait phase detection and recognition and rely on software
restricted by proprietary barriers [8][9].

Recent advancements in computer vision and DL have
opened new avenues for more accessible and efficient tech-
niques to be used as gait analysis tools [10]. Several open-
source projects have created human avatars directly from
RGB images [11][12][13], with implementations mainly
directed to game development, augmented reality (AR) and
virtual reality (VR). Yet, as we presented in [14], their results
are highly dependent on the position and orientation of the
camera concerning the human target. Challenging and sub-
optimal camera angles lead to poor stance detection and
badly formed meshes, as demonstrated in [14]. Numerous
projects have implemented DL methods to obtain the gait
energy image [15], with applications to human recognition
[16][17]. However, applying DL-based ARAs for gait anal-
ysis remains unexplored.

This paper presents a novel, open-source approach for gait
analysis utilizing DL-based ARAs to produce robust results
that are significant to the motion analysis community. Specif-
ically, our framework provides: (a) an innovative procedure
that optimizes the number and positioning of the cameras
based on the selected ARA to mitigate problematic video
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capturing that leads to poorly formed meshes as we presented
in [14], (b) an automated process that combines multiple
video inputs to create human meshes with improved surface
accuracy in the leg and foot regions, and (c) a versatile
Blender [18] add-on tool that reconstructs human motion
in 3D space and extracts gait parameters. Fig. 1 presents
the experimental setup that employs a multiple-input video-
capturing process.

This paper is organized as follows: Section II elaborates
on the most significant attributes of the camera selection
process, Section III presents the custom Blender add-on that
assists in gait analysis, Section IV presents the developed
pipeline, and Section V contains the experimental results.
Section VI concludes the paper and discusses future research
directions.

II. CAMERA SELECTION FRAMEWORK

A. Simulated Environment

The task of camera selection is foundational for every
computer vision framework. In this work, a simulation was
developed to obtain unrestricted oversight of the environ-
mental parameters and maintain precision and consistency
across different scenarios. The simulation employs elements
from Adobe MIXAMO library [19], which provides several
combinations of characters and animations, and Blender,
which successfully integrates these animations into a 3D
scene with realistic environmental conditions. These tools are
utilized to produce a naturally-moving digital actor, who is
recorded by the simulated MoCap system. The videos are
used to produce 3D meshes, whose quality is maximized via
the optimization of the camera setup, see Fig 1.

Fig. 2 depicts the digital actor in the studied gait cycle,
which is comprised of 6 phases: Loading Response (LR),
Mid-Stance (MS), Terminal Stance (TS), Pre-Swing (PS),
Initial Swing (IS) & Terminal Swing (SW), separated by six
events: Initial Contact (IC), Foot Flat (FF), Heel Rise (HR),
Contralateral IC (CIC), Toe Off (TO) & Feet Adjacent (FA)
[20].

The animation cycle is composed of 30 keyframes, aug-
mented by linear interpolations. This approach guarantees a
high degree of granularity in the motion while maintaining
sufficient motion resolution. As a result, the gait phases and
their transitions are depicted with precision, allowing for a
nuanced and accurate representation of the gait.

Fig. 2: Gait Cycle with 6 Phases.

B. Mesh Creation and Evaluation

The chosen ARA is the Explicit Clothed humans Opti-
mized via Normal integration (ECON) algorithm [11] due
to its capability to merge the characteristics of implicit
and explicit representations, thereby inferring high-fidelity
human meshes from a single RGB image. Compared to other
state-of-the-art ARAs, it demonstrates significantly greater
consistency and precision in leg reconstruction, which is
essential for the study of the gait.

The selected ARA processes the digital actor’s simulated
recordings. This can be compared to the digital actor’s
known mesh, which serves as the ground truth (GT). The
mean cloud-to-cloud distance metric is employed to evaluate
the extracted meshes and identify the optimal combination
of cameras that provides an effective view of the target.
The most suitable method for obtaining the mean cloud-to-
cloud distance is the quadratic regression [21]. A quadratic
regression accurately captures 3D geometries and smooth
surface variations by utilizing the quadratic function

f = αx2 + βx+ γxy + δy + ϵy2 + g (1)

where α, β, γ, δ, ϵ, g are the curvature coefficients, x and
y are the surface coordinates and f is the surface height.
The quadratic function facilitates surface comparisons by
approximating the reconstructed and GT surfaces using an
algebraic expression. The final cloud-to-cloud distance is
the spatial difference between the surface heights of the
quadratic approximations. Thus, the distance between the
GT and the generated meshes is quantified and used as an
evaluation score.

Fig. 3 compares full-body and subischial [22] meshes to
their corresponding evaluation results using a color grading
scale ranging from blue for minimum deviation from the
GT to red for the maximum deviation from the GT. Note
that the inclusion of the hands and upper body can impact
the evaluation score due to mesh inaccuracies in these areas
(purple circle in Fig. 3); however, the hands and upper
body are not significant for gait analysis. At the same time,
excluding the upper body from the evaluation process while
maintaining the same color grading scale allows for minor
mesh deviations in the lower body (red ellipses in Fig. 3) to
be emphasized (light blue ellipses in Fig. 3).

Fig. 3: Full Body versus Subischial Mesh Comparison. The
inclusion of the upper body results in a lower evaluation
score due to mesh inaccuracies.
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C. Camera Grid Initialization

The simulation is initialized by the generation of a camera
grid in a cylindrical formation around the target (Fig. 4).
To pinpoint the optimal angle increments of the camera
grid, we calculate the difference in mesh score for two
cameras at different angles, see Fig. 5a. For this study, we
consider that a 10mm difference between consecutive grid
viewpoints is significant. As a result, angular increments of
15◦are produced. The height-score correlation is estimated
respectively; see Fig. 5 b, and the height increment is set
at 0.2m to maintain the same score difference (10mm).
This produces 7 height intervals, starting at 0.0m, where the
camera axis is aligned with the foot, and ending at 1.2m,
i.e., the hip height for 95% of the human population [23].
Respectively, the angle intervals are 24, starting at 0◦and
ending at 360◦, to surround the subject. The definitive camera
grid is made up of 168 cameras.

Fig. 4: Cylindrical camera grid of candidate cameras around
the human target.

D. MSE Score Calculation

The camera with the optimal viewpoint for every anima-
tion keyframe must be identified to generate high-quality
meshes. This task is accomplished by determining the camera
grid point whose mesh has the minimum difference from the
corresponding GT. This process is performed by Algorithm
1.

Initially, the evaluation score matrix ai,j is determined,
where i = 1, ..., F is the camera number, j = 1, ..., F is the
number of keyframes, and a are the evaluation scores. Then,
by identifying the min(ai,j) for every row, each camera is
assigned the frames that enable the ARA to generate a high
quality mesh. Finally, to quantify the performance for this set
of cameras, the Mean Square Error (MSE) [24] is calculated
using the min(ai,j) of each frame:

MSE =
1

F

T∑
i=1

min(ai,j) (2)

(a) (b)

Fig. 5: Camera Grid Increments.

Algorithm 1 MSEScoreCalculation

Input:
• aT,F , the evaluation scores for T cameras and F

keyframes
Output:

• MSE, the mean square errort
• CIDF , the camera ID assigned to each frame

1: CIDF = array[]
2: for i in range(1, T ) do
3: CIDF [i] = ai,0
4: for j in range(1, F ) do
5: if ai,j < CIDF [i] then
6: CIDF [i] = ai,j
7: end if
8: end for
9: end for

10: MSE = 0
11: for i in mina do
12: MSE = MSE +mina[i]

2)
13: end for
14: MSE = MSE/T
15: return MSE , CIDF

Tables I and II depict the ideal number of cameras to
capture the six gait cycle events and the ideal cameras to
capture each of the 30 keyframes of the animation sequence.
The minimum number of cameras required is equivalent to
the number of cameras that best detect all events presented in
Fig. 2. Respectively, the camera set that includes the optimal
camera for each keyframe defines the maximum camera
count. These values are 4 (min) and 18 (max), respectively,
since some cameras are assigned as optimal in more than one
instance. It should be noted that a higher motion resolution
can be achieved simply by using an animation with more

775



keyframes. Nevertheless, the same guidelines apply, and the
maximum camera count directly correlates with the number
of keyframes.

TABLE I: Minimum Camera Count.

Event
Left
Foot

Event
Right
Foot

Normalized
Evaluation

Score (NES)

Camera
Height
(CH)

Camera
Angle
(CA)

IC CIC 118 0.2 90

FF TO 112 0.4 75

HR FA 94 0.2 90

CIC IC 120 0.6 60

TO FF 128 0.2 90

FA HR 84 0.2 165

TABLE II: Maximum Camera Count.

Frame NES CH CA Frame NES CH CA

1 118 0.2 90 16 120 0.6 90

2 121 0.4 90 17 132 1.0 90

3 112 0.4 90 18 128 0.2 90

4 115 0.4 45 19 131 0.2 90

5 129 0.4 60 20 135 0.4 270

6 110 0.4 345 21 117 0.4 210

7 94 0.2 165 22 84 0.2 165

8 110 0.2 330 23 90 0.4 15

9 125 0.8 75 24 96 0.2 15

10 128 0.8 270 25 116 0.4 75

11 124 0.2 90 26 116 0.4 75

12 123 0.2 90 27 135 0.6 255

13 125 0.6 90 28 116 0.8 90

14 109 0.6 90 29 103 0.2 90

15 108 0.4 90 30 110 0.6 90

E. Camera Addition - Forward Pass

A forward pass is implemented to initialize the camera
selection framework. It begins with the minimum camera
count and iteratively incorporates the next optimal camera
until the maximum camera count is reached. Algorithm
2 presents this process and identifies the camera, whose
addition minimizes the MSE.

The Attainable Improvement Index (AII) is introduced to
quantify the MSE scores produced from each iteration. AII
is defined as

AII =
MSEmax −MSEcurrent

MSEmax −MSEmin
(2)

where MSEmax is the maximum attainable score, MSEmin

is the minimum attainable score, and MSEcurrent is the
score of the current iteration. MSEmax occurs for the
lowest camera count and MSEmin for the highest camera
count. Thus, AII illustrates the percentage of the maximum
attainable score achieved with each iteration, as shown in

Algorithm 2 OptimalCameraAddition

Input:
• MSEB , the score for base camera set
• aB,F base camera values
• aC,F contender camera values, where C = Total−B

Output:
• MSEB+1,min, the new MSE score
• cameraadded, the added camera

1: basea = matrix[]
2: for i in range(1, B) do
3: for j in range(1, F ) do
4: baseB [i, j] = ai,j
5: end for
6: end for
7: MSEB+1,min = MSEB

8: cameraadded = 0
9: for k in range(1, C) do

10: for j in range(1, F ) do
11: conta[j] = ak,j
12: end for
13: baseB+1 = baseB + conta
14: MSEB+1 = ModelScoreCalculation (baseB+1)
15: if MSEB+1 < MSEB+1,min then
16: MSEB+1,min = MSEB+1

17: cameraadded = k
18: end if
19: end for
20: return MSEB+1,min, cameraadded

Fig. 7. The camera addition process is terminated when
the addition of another camera leads to a less than 5%
improvement in the quality of the resulting meshes. This
produces an AII close to 90%, corresponding to 10 cameras.

F. Surface Alignment and Reconstruction

A crucial part of the camera selection is the prioritization
of meshes with accurate leg positioning (ALP). However,
ALP meshes sometimes have surface irregularities, especially
in the sub-ankle/foot region. However, some meshes exhibit
robust foot geometries (RFGs) but imprecise leg positioning.
To produce optimized meshes, corresponding ALP and RFG
meshes are combined through the process of Poisson surface
reconstruction [25] with Iterative Closest Point (ICP) [26]
alignment.

This procedure is initialized by performing a new evalu-
ation round exclusively for the foot region of the meshes.
Thus, the RFG meshes for each frame are derived. The ALP
meshes are produced by Algorithm 2. Subsequently, the ICP
algorithm is performed between the ALP and SFG meshes
of the corresponding frames to align them. Finally, utilizing
the Poisson surface reconstruction , the leg surfaces of the
ALP mesh are combined with the foot surfaces of the RFG
mesh, producing improved meshes like the ones in Fig. 6.
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(a) Frame 3 (b) Frame 24

Fig. 6: Surface reconstruction examples.

(a) AII (b) ADI

Fig. 7: Score metrics for forward and reverse pass.

G. Camera Elimination - Reverse Pass

The surface reconstruction process can be extended from
mesh optimization to camera elimination. Following the
elimination of a camera, the frames initially assigned to it
are redistributed to the cameras that offer the next optimal
mesh of the leg region. This redistribution may result in
quality degradation due to the sub-optimal viewpoint of the
newly assigned cameras. This degradation is mitigated by
performing surface reconstruction, enabling the outcomes to
attain mesh quality identical to that of the version before
the camera elimination. Thus, the eliminated camera can be
rendered redundant.

Algorithm 3 describes the process of identifying the cam-
eras with the lowest contribution to the MSE by finding
the ones whose elimination results in the minimum MSE
increase. The Attainable Deterioration Index (ADI) is intro-
duced, defined as

ADI =
MSEcurrent −MSEmin

MSEmax −MSEmin
(3)

In the reverse pass, the MSEmin corresponds to a 10
camera set, and the MSEmax corresponds to a 4 camera set.
Fig. 7 shows that by selecting a 50% threshold for ADI , the
eliminated cameras are 3, resulting in a setup with 7 cameras.

III. BLENDER ADD-ON

Following the simulation-informed design of the camera
setup, the meshes are combined in a 3D animation of the
digital actor, which can be used to analyze the actor’s gait.

For this purpose, the Gait Analysis Module for Avatar
Reconstruction in 3D (GAMA 3D) was developed as an add-
on for the Blender toolbox. Users can import the generated
meshes, apply spatiotemporal transformations, and recon-
struct the original animation in a virtual 3D environment. Ap-
plying a Boolean modifier extracts the intersections between
the floor-plane and the feet of each mesh, thereby establish-
ing the virtual footprint. The area of the virtual footprint is
utilized to measure the accuracy of the mesh reconstruction
and detect phase-changing events. Fig. 8 demonstrates the
virtual footprint results at frames with such events.

Algorithm 3 Optimal Camera Elimination

Input:
• MSEB , the score for base camera set
• aB,F base camera values

Output:
• MSEB−1,min, the new MSE score
• cameraelim, the eliminated camera

1: basea = matrix[]
2: for i in range(1, B) do
3: for j in range(1, F ) do
4: baseB [i, j] = ai,j
5: end for
6: end for
7: MSEB−1,min = 2MSEB

8: cameraelim = 0
9: for i in range(1, B) do

10: baseB−1 = baseB − baseB [i]
11: MSEB−1 = MSEScoreCalculation (baseB−1)
12: if MSEB−1 < MSEB−1,min then
13: MSEB−1,min = MSEB−1

14: cameraelim = i
15: end if
16: end for
17: return MSEB−1,min, cameraelim

IV. EXPERIMENTAL VALIDATION

A. Real World Setup

The developed framework has facilitated the identification
of the optimal camera configuration via a simulated setup
of up to 168 cameras and the contribution of an avid
digital actor. The significant number of cameras and the
large number of simulated gaits that were tested would not
have been possible without the simulation-based approach.
In our laboratory, a physical implementation of the optimal
7-camera layout has been designed to validate the results.

The experimental setup consists of a treadmill placed in
the center of the action space and 7 Razer Kiyo Pro [27]
cameras that capture full HD video at 60FPS. These cam-
eras are positioned around the target in a circular formation
of 2.5m radius, as shown in Fig. 1.

B. Pipeline Summary

The framework used in our experiments employs the
pipeline presented in Fig. 9. Specifically:
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(a) IC (b) FF (c) HR (b) TO

Fig. 8: Left Footprint Event Examples.

Fig. 9: The steps of the experimental pipeline.

Initialization: This involves the equipment setup, the
calculation of the intrinsic and extrinsic camera parameters
[28], and the recording of the footage from all cameras.

Video Processing: The footage is split into monocular
inputs, which in turn are broken down into individual frames.
Then each frame is undistorted using the camera matrix [29].

ARA Integration: ECON [11] is applied to obtain 3D
reconstructed human meshes. With minor adaptations, ECON
can be replaced with any ARA based on Skinned Multi-
Person Linear Model (SMPL) [30].

Mesh Optimization: The quality of the mesh is evaluated.
The mesh is forwarded to the next step or enhanced using
the surface reconstruction with ICP alignment process.

Blender Implementation: The produced meshes are com-
bined into an animation utilizing GAMA 3D. By integrating
Blender modifiers with custom-made functionalities, infor-
mation about the joint angles of the human actor is calcu-
lated, the distinct phases of the gait cycle are recognized,
and gait parameters are extracted.

V. RESULTS

A. Mesh Results

We conducted several experiments in the simulated and
real-world environments to validate the findings from the
camera selection pipeline. Examples of meshes obtained by
applying the pipeline of Fig. 9 are presented in Fig. 10.

(a) frame1, cam at (0.2m, 90◦) (b) frame 7, cam at (0.2m, 165◦)

Fig. 10: High-quality Meshes produced by the camera selec-
tion framework. Areas visible by the cameras are highlighted
with orange.

B. Camera Positioning and Assignment

The selected cameras produce the optimal mesh quality.
However, there are regions where the produced meshes are
consistently good. Regions examples in Fig. 11 are LR-
B, TS-E, IS-A, and SW-B, highlighted with dark green.

Notably, they are symmetrical with respect to the axis

Fig. 11: Evaluation Score Heatmap.

(a) frame1, cam at (0.6m, 270◦) (b) frame 7, cam at (0.4m, 135◦)

Fig. 12: Meshes from camera positions within acceptable
regions. Areas visible by the cams are highlighted with pink.
The high quality of the meshes is maintained

of motion, and the chosen angle-height combinations are
always within them. For example, camera 5 from Fig. 1
utilizes regions LR-E and TS-E. Although the framework
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yields conclusive results based on quantitative data regarding
the number and pose of the cameras needed, the Camera
Positioning and Assignment (CPA) process can be broadened
and made less restrictive. This can be achieved by extending
the accepted CPA area to include the green regions. Fig. 12
presents meshes produced from cameras placed in alternate
positions but within these regions and, thus, display similar
quality to those of Fig. 10.

Conversely, some regions produce meshes with consis-
tently low quality and, therefore, should be avoided. Ex-
amples in Fig. 11 highlighted with red are LR-A, PS-
F, TS-C, and SW-D. Fig. 13 shows mesh examples from
cameras placed within these regions that display unnatural
joint placement and deformed external geometries.

Contrary to the camera positioning, the camera number
displays less flexibility. Decreasing the camera number sig-
nificantly reduces the versatility of the CPA process, even
within the accepted regions, resulting in poor mesh quality
for specific frames, as presented in Fig. 14.

(a) frame 4, cam at (0.4m, 255◦) (b) frame 7, cam at (0.2m, 75◦)

Fig. 13: Meshes from cam positions within non-acceptable
regions. Areas visible by the cameras are highlighted with
yellow. A clear mesh quality degradation is displayed.

(a) frame 4, cam at (0.4m, 15◦) (b) frame 7, cam at (0.2m, 60◦)

Fig. 14: Meshes produced by a three-camera set. Areas
visible by the cameras are highlighted in blue. A drop in
mesh quality is observed.

C. Footprint Area Plots

Importing these meshes to the GAMA 3D add-on cal-
culates the area of each foot’s footprint. Fig. 15 presents
the contact area of the left and right foot during one gait
cycle. Changes in the contact area indicate phase-changing
events and can, therefore, be utilized for phase detection, an
important parameter of the gait.

D. Joint Angle Plots

Among the parameters with exceptional scientific impor-
tance to the gait analysis community are the joint angles
of (a) the hip, (b) the knee, and (c) the ankle. These joint
angles are derived using specific landmarks of the leg and
foot [31]. Fig. 16 presents the joint trajectories utilizing the

keypoints provided by the SMPL model compared to average
joint trajectories provided by [32]. The experimental results
are within the context of the population in the database. Note
that the plots for the right leg and foot have been offset to
align the corresponding IC phase with 0 % of the gait cycle.

Fig. 15: The percentage of the footprint in contact with the
ground. The phase-changing events are highlighted in red.

Fig. 16: Joint trajectories of the left and right legs as obtained
from our framework, compared to database averages obtained
from [32].
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VI. CONCLUSION
This paper presented a novel approach to streamline the

camera selection process of gait analysis using DL-driven
avatar reconstruction, which can greatly impact the quality
of the produced human meshes as presented in our previous
work [14]. Demonstrated by the simulated and real-world
experiments, our approach: (a) determines the optimal num-
ber and position of cameras for (but not limited to) one
avatar reconstruction algorithm, (b) evaluates and refines
the meshes in cases of poor quality, and (c) combines the
results into a virtual animation and extracts gait parameters.
Future research directions include the integration of more
state-of-the-art ARAs or developing a gait-centric ARA from
the ground up. The GAMA 3D add-on could be further
enhanced with additional gait analysis functionalities, such
as calculating cadence, stride length, step width, etc. Lastly,
integrating the work in [33] into the proposed framework
may provide a complete and comprehensive tool to better
facilitate the analysis of the human gait.
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