
  

  

Abstract— Quadrupedal locomotion remains a complex 
control challenge, particularly when energy efficiency is 
considered. Recent advances in Deep Reinforcement Learning 
(DRL) offer a promising framework for automating the 
synthesis of low-level controllers from sensory input. In this 
work, we develop a DRL-based scheme for energy-efficient 
trotting on the Laelaps II quadruped, simulated in MuJoCo. A 
high-fidelity model of the robot is constructed, with emphasis on 
accurately capturing drivetrain dynamics. We design a reward 
function and action space that promote stable trotting while 
minimizing the Cost of Transport (CoT). The proposed method 
initially presented in [1] demonstrates improved energy 
efficiency during trotting on level terrain, replicating treadmill-
like conditions at NTUA’s Control Systems Lab. 

I. INTRODUCTION 

Quadrupedal locomotion demands rapid reflexes, coordinated 
leg control, precise force handling, and robust balance, 
traditionally requiring extensive manual tuning. Model-free 
DRL methods effectively learn locomotion directly from 
experience [2], yet often overlook energy efficiency [3], 
penalize joint accelerations without considering mechanical 
antagonism [4], and struggle with coordinated gait patterns 
like trotting due to increased data needs and invalid 
configurations [5]. This work investigates energy-efficient 
trotting for the quadruped Laelaps II [1], focusing on forward 
locomotion on level terrain with reduced energy consumption. 

II. METHODOLOGY 

Initially a highly realistic MuJoCo representation of the 
Laelaps II quadruped (Fig. 1) was created, with all mechanical 
and electrical properties accurately reflecting the physical 
system. These properties were obtained from component 
datasheets and, where necessary, experimentally validated. To 
enable energy-efficient trotting, the robot’s energy 
consumption was incorporated into the reward function. The 
total actuation energy 𝐸!"!  is defined as the sum of the 
mechanical actuation energy 𝐸#$! and the electrical losses 𝐸%& 
computed via integration of the respective power expressions 
(1). Numerical integration was performed using the Simpson 
1/3 rule over a given time interval 𝛥𝑡	 = 	𝑡' −	𝑡( and timestep 
dt. The quantities 𝜏),+, �̇�),+, 𝑅),+, and 𝐾,,+, denote the torque, 
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angular velocity, winding resistance, and torque constant of 
the 𝑖!-, motor, respectively. 
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Figure 1 Laelaps II, (a) MuJoCo model, (b) Drivetrain. 
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In the reward function (2), a simplified version of CoT is used 
since the robot’s mass (𝑚) and the gravity’s acceleration (𝑔) 
are constants. Furthermore, the reward in (2) accounts for the 
distance traversed from the beginning of the episode 𝛥𝑥-., not 
only the one in the current step. Finally, the total reward 𝑟𝑒𝑤#/# 
computed at each agent timestep, combines a positive term 
promoting forward progression, a penalty for lateral deviation 
from the desired trajectory, and an energy-related term based 
on the Cost of Transport (CoT). 
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		(2),	𝑟𝑒𝑤#/# = 𝑟𝑒𝑤3 	−	𝑟𝑒𝑤5 − 𝑟𝑒𝑤-0	(3)	

III. RESULTS 

Similar approaches have also tried to reduce energy 
consumption by penalizing joint acceleration or the 
mechanical part of the actuation power during a gait, but not 
the drivetrain’s total energy demands. After training and 
testing them on Laelaps II, our approach still achieved the 
lowest CoT , i.e., 1.89, (Fig. 2). 

 
Figure 2 Using the proposed reward function the lowest CoT was 

achieved. 
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