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Abstract— The ESA (European Space Agency) is currently
pursuing the development of the e.Deorbit mission that will
remove a large defunct satellite from Earth orbit: ENVISAT. To
fulfil the mission autonomy requirements, ESA has decided to
embed in the GNC (Guidance, Navigation, Control) software,
fault tolerance capacities against actuator faults. The aim of
this paper is to present the development and validation of a
model-based fault diagnosis and tolerant control solution for
such faults. The proposed solution is based on a new class
of nonlinear unknown input observers, optimal in the L2-gain
sense, and a modified version of the nonlinear inverse pseudo
control allocation technique. An intensive simulation campaign
conducted within a high-fidelity nonlinear industrial simulator,
demonstrates the efficiency of the approach.

I. INTRODUCTION

The ESA (European Space Agency) is currently pursuing
the development of the e.Deorbit mission that will remove
a large (8.2tons, 26m × 10m × 5m) defunct satellite from
the Earth orbit: ENVISAT. The e.Deorbit mission pertains
to a particular technological means for active debris removal
that involves a seven degree of freedom robotic manipulator,
being operated in tight coordination with the chaser platform
motion, see Fig. 1 for an illustration. This particular techno-
logical context motivated ESA to manage studies to develop
fault detection, isolation (FDI) and tolerant control (FTC)
solutions for the propulsion unit of the chaser platform.
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Numerous model-based FDI techniques have been de-
veloped in the academic community. With regards to the
problem of spacecraft thruster faults, one can mention the
work presented in [1] that proposes a sliding mode observer-
based approach for the Mars Express spacecraft during the
sun acquisition mode. The work reported in [13] addresses
too the Mars Express experiment and is based on both state
estimation and unknown input decoupling. In [15], an ex-
tended Kalman filter is used to estimate the abnormal (fault)
torque. The Mars Sample Return mission is considered in [8].
A solution is developed based on the H∞/H− theory and a
bank of unknown input observers jointly used with a cross–
correlation test for fault isolation. The H∞/H− approach is
considered for micro-Newton colloidal thruster faults during
the experiment phase for the LISA Pathfinder experiment
in [3] and in [6], H∞/H− filter–based strategies are also
proposed to diagnose thruster faults for the Microscope
satellite. Thruster faults during station keeping manoeuvres
are considered for telecom satellites in [2]. A pure H∞ FDI
strategy is proposed in [11] for control surface faults in the
Hopper re-entry vehicle and [14] proposed some solutions
for MYRIADE microsatellites thruster faults.

With regards to FTC solutions, the control allocation
technique (see [10] for a survey) has been implemented using
a SIMPLEX–based algorithm in the Automated Transfer Ve-
hicle that has docked five times with the International Space
Station. [12] proposed a retreat strategy at the guidance level
to accommodate faults occurring in the actuation system of
the chaser of the Mars Sample Return mission, during in
orbit rendezvous with a canister.

Note that this overview of existing works covers only
studies that deal with real space missions. There exists plenty
of papers that addresses the design of FDI-FTC solutions
for spacecraft but they are thought to be more or less, an
academic exercise since they are not representative of the
full problem (in view of the authors of this paper). Often,
the spacecraft is considered as a rigid body in which the
coupling between the rotational and translational motions,
the effect of flexible appendages or the effect of propellant
sloshing are not considered. This paper overcomes this
problem. The proposed strategy follows the study presented
in [4], i.e. NL-UIO and control allocation techniques are
used to diagnose and accommodate thruster faults. The major
difference results in the NL-UIO technique.
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Fig. 1. e.Deorbit mission concept

II. REFERENCE SCENARIO

The e.Deorbit mission involves several phases, namely
synchronisation, capture, rigidisation and stabilisation
phases. The synchronisation starts with a transition of the
chaser from Parking Hold Point to Capture Point. The
motion synchronisation strategy comprises several steps, i.e.
V-bar approach from 100 to 30 m, spherical fly-around to
target angular momentum vector, approach along angular
momentum vector, synchronisation of rotational motion and
transfer to the capture point. At the capture point, a robot
arm moves the open gripper to the grasping point, located
on the launcher adapter ring, see Fig. 1 for an illustration.
As soon as the gripper is in the right position for grasping,
it closes quickly, establishing a form closure assuring that
ENVISAT cannot escape (soft capture). After confirmation of
successful capture, the robot arm is rigidised (hard capture).
The stabilisation of the coupled system (chaser plus target)
begins upon confirmation of arm rigidisation.

The GNC (Guidance Navigation and Control) and avionics
architecture retained for the mission, is composed of a
LIDAR which allows full relative pose estimation, an IMU
(accelerometer and gyro), 3 Star Tracker heads, a Sun Sensor,
a GPS receiver and a GPS constellation propagation. The
actuation consists of 24 thrusters of 22N for both attitude
and position control. The robot arm is equipped with 7 joints,
a gripper and a vision system for relative navigation between
gripper and grasping point. The combined controller for the
chaser satellite and the robotic arm, has been designed using
H∞ techniques in order to guarantee robust performance
and stability. The controller issues simultaneously i) force
and torque commands for the chaser, and, ii) manipulator
joint torque commands which are realised by the inner joint
control loops.

The complete mission is modelled into a so-called func-
tional engineering simulator developed in Matlab/Simulink,
within the library called SPACELAB that contains e.g. sen-
sors, actuators, dynamic, kinematic and environment models.
Both chaser and target have each one an associated envi-
ronment module as some characteristics depend on specific
spacecraft properties. Typically, the chaser has two partially
filled tanks that cause propellant sloshing, whereas it is
assumed that the tanks of ENVISAT are empty. A contrario,
since ENVISAT has still its solar arrays deployed, flexible

modes are considered. For both spacecraft, the considered
disturbances are central body acceleration, non-spherical
gravity acceleration, gravity gradient torque, solar radiation
pressure, third-body perturbation (Moon and Sun), Earth
magnetic torque and aerodynamic drag. The implementation
of the multi-body dynamics model of the robot arm has been
carried out based on the Simscape Multibody technology. A
universe library provides the ephemerides of Earth, Moon,
and Sun.

III. THE FDI UNIT

A. Modelling issues

Recent studies [4], [8] demonstrated that thrusters faults
can be successfully diagnosed using the model that links the
actuator (thruster) commands with the IMU measurement.
This approach is retained in this work. Then, by virtue of the
Euler’s second law, it follows (in the so-called body frame):

ω̇ = J−1
∑
k

Tk − J−1ω × Jω (1)

ω ∈ R3 is the angular velocity vector and J ∈ R3×3 is the
inertia dyadic about the center of mass CoM.

∑
k Tk = Ts +

Tp + Td describes the sum of torques about CoM. Ts ∈ R3

refers to the torques induced by propellant sloshing, Tp ∈
R3 refers to the torques caused by the propulsion unit and
Td ∈ R3 is considered to be sum of the disturbance described
in the previous section and the reaction torques due to the
robotic arm motion. Note that in this work, Td is considered
as a general disturbance vector.
Propellant sloshing in each tank is modelled as a linear 3D
spring-mass model that considers the Coriolis, the centrifugal
and the Euler accelerations and of course, the accelerations
due to the actuation unit and disturbances, see [8] for details
if necessary. Merging the sloshing model of each tank into
a unique state space model leads to the equations

ẋs = Asxs +
[
1
mBsF Bsω Bsω̇

] Fs + Fp + Fd

ω
ω̇

 (2)

[
Fs

Ts

]
=

[
CsF

CsT

]
xs (3)

where Fs ∈ R3, Fp ∈ R3 and Fd ∈ R3 refer to the
forces induced by propellant sloshing in the two tanks, the
forces caused by the thruster-based propulsion unit and the
disturbance forces (considered unknown but with an a priori
known distribution matrix), all given in the body frame.
m and xs ∈ R36 refer to the chaser’s mass and the state
vector associated to the sloshing modes of the two tanks.
As, BsF , Bsω, Bsω̇, CsF , CsT are matrices that depend on
the sloshing characteristics given in table I.

Combining the models (1) and (2)-(3) into a unique state
space representation leads to

ẋ = Ax+ φ(ω) +B

[
Fp

Tp

]
+ E

[
Fd

Td

]
y =

[
O I3

]
x (4)
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slosh models damping coeff. frequency of mode 1 frequency of mode 2 frequency of mode 3 propellant mass
Tank 1 0.1± 50% 0.478rd/s± 2% 0.821rd/s± 2% 1.04rd/s± 2% 13.8kg ± 2%
Tank 2 0.1± 50% 0.478rd/s± 2% 0.821rd/s± 2% 1.04rd/s± 2% 22.1kg ± 2%

chaser’s mass: m = 1.47tons± 1% CoM (center of mass): [−0.02m − 0.01m 1.11m]± 25%

TABLE I
LIST OF UNCERTAINTIES.

where I,O stand for the identity matrix and the null matrix
of adequate dimension, respectively. The augmented state
vector x is defined according to x = [xTs ωT ]T . The matrices
A,B and the nonlinear function φ(ω) are:

A =

[
As + 1

mBsFCsF +Bsω̇J
−1CsT O

J−1CsT O

]
(5)

φ(ω) =

[
Bsωω −Bsω̇J

−1 (ω × Jω)
−J−1 (ω × Jω)

]
(6)

B =

[
1
mBsF Bsω̇J

−1

O J−1

]
, E = B (7)

Let Sall = {1, ..., 24} denote the set of all the thruster
indices, and let uk(t),∀k ∈ Sall be the commanded opening
duration of the kth thruster. The torques Tp and forces Fp

generated by thrusters are given by (fault free cases)[
Fp

Tp

]
=

[
MF

MT

]
u(t) = Mu(t), M ∈ R6×24 (8)

The columns of M (called the thruster configuration matrix)
are the influence coefficients defining how each thruster
affects each component of Tp and Fp. With regard to the
thruster faults considered in this work, the focus is on the
stuck open (fully open) and stuck closed (closed thruster)
faults. The following mathematical model can be used to
describe these faults:

φk(t) =

{
max{uk(t), 1} if stuck open
0 if stuck closed (9)

where the index k refers to the kth thruster. Assuming no
simultaneous faults, the considered thruster faults can be
modeled in a multiplicative way according to (the index f
outlines the faulty case)

uf (t) = (I24 −Ψ(t))u(t) (10)

with Ψ(t) = diag (ψ1(t), ..., ψ24(t)), where 0 ≤ ψk(t) ≤
1,∀k ∈ Sall are unknown. The status of the kth thruster is
modeled by ψk as follows:

ψk(t) =

{
0 if healthy
1− φk(t)/uk(t) if faulty (11)

where φk enables to consider the different fault scenarios.
Combining the equations (4), (8) and (10) together, leads

to the following state space representation that models both
the fault-free and faulty rotational dynamics of the chaser,
the measurement y being provided by the IMU:

ẋ = Ax+ φ(ω) +BM (I24 −Ψ(t))u(t) + E

[
Fd

Td

]
y =

[
O I3

]
x (12)

Then, using an additive approximation [5] of the fault
multiplicative fault model stated by (9)-(11), (12) can be
re-written according to

ẋ = A(ρ)x+ φ(ω, ρ) +B(ρ)M(ρ)u+ E(ρ)

[
Fd

Td

]
+K(ρ)f

y =
[
O I3

]
x (13)

In this equation, the kth column of the matrix K is the
kth fault signature associated to the kth fault mode fk. The
indices k = 1, ..., 24 also coincide with the numbering of
components of the set Sall, and thus with the columns of
the matrix M , see (8).

This model depends nonlinearly on the parameters listed
in table I, that are gathered in (13) into the vector ρ. It
seems obvious that many of these parameters vary during
the mission such as m and CoM due to e.g. propellant
consumption. Thus, ρ is a time varying vector.

Using the higher-order singular value decomposition
canonical form of tensor product model transformation, a
finite set of bounded hyper-parameters πi(t), i = 1, ...Np :
π(t) = [π1(t), ..., πNp(t)], |πi(t)| ≤ πi is deduced from the
domain of variation of ρ(t), so that

ẋ = A(π)x+ φ(ω, π) +B(π)M(π)u+ E(π)

[
Fd

Td

]
+K(π)f

y =
[
O I3

]
x (14)

and so that components πi enter the model (14) in a affine
manner, see [7] for details about this technique. π(t) is
assumed to be available in real time and to lie in the
polytope Ξ of vertices Πi, i = 1, ..., Nv , satisfying the
convex decomposition

π = β1Π1 + ...+ βNv
ΠNv

, βi ≥ 0,

Nv∑
i=1

βi = 1 (15)

Note that as explained in [7], Ξ is a polytope that over-
approximates the domain of ρ. Then, (14) is more conserva-
tive than (13).

Remark 1: It is clear that the definition of π plays a
central role in the proposed approach. Due to space limi-
tation, the definition of π is not given in this paper. Each
πi, i = 1, ...Np is in fact, a functional of some chaser
properties that are estimated in real-time by the navigation
unit.

B. The FDI unit

The FDI strategy consists of two main functions, namely
decision making which provides alarm generation and fault
isolation which circumscribes the fault to elements of Sall.
The proposed solution here involves a bank of nonlinear
unknown input observers (NL-UIOs), built upon Eq. (14).

4358



1) Fault isolability discussion:: Let us first come back to
the fault distribution matrix K(π) in (14). Analysing K(π)
in terms of directions spanned by its column vectors, reveals
that Sall can be further classified into the following subsets

S1 = {1, 2},S2 = {3, 4},S3 = {5, 7},S4 = {6, 8}
S5 = {13, 14},S6 = {15, 16},S7 = {17, 19},S8 = {18, 20}

(16)

so that, for indices in a given set Sk, the associated column
vectors of K(π) are colinear. This clearly demonstrates
that it is not possible to distinguish a fault occurring in a
given pair of thrusters associated to a set Sk by means of
decoupling approaches like NL-UIOs. This property can be
mathematically formalised as the following rank deficiency
property: for a given set Sk, k = 1, ..., 8,

rank
[
Tk(π)K(π)

]
6= rank

[
K(π)

]
∀π ∈ Ξ (17)

where Tk refers to the decoupling matrix of the kth NL-UIO,
as it will be defined later, see (26). This is a limitation of
the proposed solution. A solution to this problem may result
in using the techniques discussed in, e.g. [7].
Additionally, we define the following sets:

S9 = {9},S10 = {10},S11 = {11},S12 = {12}
S13 = {21},S14 = {22},S15 = {23},S16 = {24} (18)

2) NL-UIO design:: Thanks to the definition of the sets
Sk, k = 1, ..., 16, we are now able to well pose the design
of the FDI unit.

Problem 1: Consider the model (14). The problem con-
sists of the design of a bank of 16 NL-UIOs so that the
output estimation error eyk

(t) = ŷk(t) − y(t) ∈ R3 of the
kth NL-UIO is decoupled from the faults involved in the set
Sk while achieving robustness against disturbances Fd, Td
∀π(t) ∈ Ξ, in the L2-gain sense. y(t) is the measured angular
velocity ω(t) provided by the IMU sensor and ŷk(t) is the
estimate provided by the kth NL-UIO. Then, the UIO with
the minimum estimation error in the sense of the L2-norm,
i.e. mink ||eyk

||2, k = 1, ..., 16, reveals that a fault occurs in
the thrusters associated to Sk.
As an illustration case, we consider now the case of design-
ing the first NL-UIO, i.e. we focus on S1. To proceed, f
is split into two subsets according to the definition of S1
and Sj , j = 2, ..., 16, namely f = [f1 f2]T which will play
the role of the unknown input vector to be decoupled and
f = [f3....f24]T which are the remaining components of
f . The partition of K(π) follows so that (14) is rewritten
according to (the dependency of π is omitted for clarity)

ẋ = Ax+ φ(ω) +BMu+ Ed+Kf +Kf

y =
[
O I3

]
x = Cx (19)

where d = α
[
FT
d TT

d

]T
. α is a diagonal matrix of positive

elements, i.e. α = diag(αi) : αi ≥ 0, i = 1, ..., 6, that
is introduced to weight the L2-gain problem. By such a
parametrisation, it is possible to penalise some components
of d within the L2-gain optimisation problem. This has

been revealed useful in practice in order to not decrease the
sensitivity level of the NL-UIO against f .

Then, the goal is to design the following NL-UIO

ż = N(π)z + T (π)φε +H(π)u+ L1(π)y (20)
x̂ = z − L2(π)y (21)
ey = ŷ − y = Cx̂− y (22)

with φε = φ(εsat(ω), π), in such a way that, ∀π ∈ Ξ, ey is
decoupled from f and robust to d, in the L2-gain sense. The
solution to this problem is given in the following.

Theorem 1: Assume that

‖φε − φ(ω, π)‖ ≤ µ‖x̂− x‖ (23)

The NL-UIO given by (20)-(22) exists if there exist a Lya-
punov matrix X = XT > 0, matrices Y j , Zj , j = 1, ..., Nv

of adequate dimension and a scalar γ so that (24) is satisfied.
In (24), (.)† stands for the Moore-Penrose inverse of matrix
and the notationMj refers to the matrixM(π) evaluated at
the vertex Πj , i.e. Mj =M(Πj).

Then (the dependency of π is again omitted for clarity):

N =
(
I + L2C

)
A− ZC (25)

T =
(
I + L2C

)
, H = TBM (26)

L1 = Z
(
I + CL2

)
−
(
I + L2C

)
AL2 (27)

L2 = U + Y V, Y = X−1Y , Z = X−1Z (28)

and the (quadratic) L2-gain performance level between ey
and d is less or equal to γ. In (25)-(28), all ”π-depend”
matrices are deduced from their vertex values using the
convex decomposition (15).
Proof : First, note that due to its definition, K(π) is of
full column rank and rank

[
CK(π)

]
= rank

[
K(π)

]
, ∀π ∈

Ξ, which guarantees a solution to the problem. Next, and
as usual in UIO theory, the design of the NL-UIO is done
without considering f , so f = 0.
Consider now the estimation error e = x̂ − x. Then, with
(25)-(28) (the dependency of π is omitted for clarity)

ė = Ne+ T (φε − φ)− TEd− TKf

where φ = φ(ω, π). By virtue of the L2-gain quadratic
performance theory, the NL-UIO is quadratically stable and
achieve L2-gain quadratic performance level γ if there exists
a Lyapunov function V = eTXe : X = XT > 0 so that
V̇ + eT e− γ2dT d < 0.
It can be verified that

V̇ = eT (NTX +XN)e+ 2eTXT (φε − φ)

− dTETTTXe− eTXTEd (29)

V̇ ≤ eT (NTX +XN)e+ 2||eTXT ||||φε − φ||
− dTETTTXe− eTXTEd (30)

and then, with (23)

V̇ ≤ eT
(
NTX +XN + µ(I +XTTTX)

)
e

− dTETTTXe− eTXTEd (31)

4359



 Pj + PT
j + (µ+ 1)I −

(
X(I + UjC) + Y jVjC

)
Ej

√
µ
(
X(I + UjC) + Y jVjC

)
−
((
X(I + UjC) + Y jVjC

)
Ej

)T −γ2I O
√
µ
(
X(I + UjC) + Y jVjC

)T O −I

 < 0, j = 1, ..., Nv

(24)

Pj = X(I + UjC)Aj + Y jVjCAj − ZjC, Uj = −Kj

(
CKj

)†
, Vj = I− CKj

(
CKj

)†

Then, V̇ + eT e− γ2dT d < 0 is equivalent to[
G+WWT −XTE
−ETTTX −γ2I

]
< 0 (32)

with G = NTX +XN + (µ+ 1)I and W =
√
µXT . This

inequality can be re-written according to[
G −XTE

−ETTTX −γ2I

]
+

[
W
O

] [
WT O

]
< 0 (33)

and then, by congruence with

[
I

[
W
O

]
O I

]
, it follows

 G −XTE W
−ETTTX −γ2I O

WT O −I

 < 0 (34)

By virtue of the vertex property and with (25)-(28),
(34) yields iff inequality (24) yields, which is a LMI in
X,Y (Πj), Z(Πj) j = 1, ..., Nv �

3) Alarm generation: : For decision making, consider
r(t) defined according to r(t) =

∥∥[ey1
(t) ... ey16

(t)]T
∥∥
2
. The

decision test results in the Boolean signal B(t) given by

B(t) =

{
1 if E{r(tn)} > Jm and/or E

{
r2(tn)

}
> Jv

0 if E{r(tn)} ≤ Jm and E
{
r2(tn)

}
≤ Jv

(35)
where E{.} refers to the expectation operator. r(tn) refers
to r(t) evaluated at time instant t = tn = nTs, n ∈ R+,
Ts being the sampling period of the GNC. Additionally a
confirmation time tc is considered, i.e. an alarm is generated
iff B(t) = 1 during at least tc.

IV. THE FTC UNIT

The proposed FTC solution consists of control re-
allocation, thanks to the redundancy in the thruster configura-
tion. The proposed strategy works as follows: as soon as the
faulty thrusters are isolated by the FDI unit, they are turned
off using dedicated thruster latch valves and the forces and
torques computed by the controller are re-allocated among
the healthy thrusters. This problem can be formulated as the
following optimisation problem:

u = argmin
u∈U={uk:0≤uk≤uk},∀k∈Sall

‖Wv(Mu− vr)‖p (36)

vr is the vector of the desired force and torque commands
and uk is the maximum opening value of the kth thruster.
The basic of the fault tolerance principle is that if the kth
thruster is declared faulty by the FDI unit, then uk is set
to ”0”. The nonsingular weighting matrix Wv affects the

prioritization among force/torque components.
The different choice of the vector p-norm results in i)
minimum flow rate allocation for p = 1, minimum power
allocation for p = 2 and iii) minimum peak torque/force
allocation for p =∞. Here, p = 1 has been revealed to lead
to the smallest propellant consumption.

Algorithm 1, whose foundations come from the nonlinear
pseudo-inverse controller technique initially formulated by
[9], states the algorithm that solves (36). The algorithm
terminates if the precision ε of the allocated torques/forces,
weighted by Wv , is achieved (here ε = 10−10) or if the max-
imum number of iterations Nmax

iter = 350 is reached. MIB
stands for the Minimum Impulse Bit (minimum shooting
time that a thruster can execute), λ = 1.7 allows to manage
the convergence time and M‡k , k = 1, ..., 16 stands for the
generalized inverse of Mk, k = 1, ..., 16, optimal in the sense
of the considered p-norm. The indices k = 1, ..., 16 coincide
with the indices of Sk given in (16) and (18).

Algorithm 1 Solution of (36)
1: Set Niter = 0, v = vr and M̄k = M ;
2: if the FDI unit identifies the set Sk then
3: Set M̄i = 0 and ūi , 0 ∀i ∈ Sk;
4: end if
5: while ‖W v ∗ error‖1 > ε AND Niter < Nmax

iter do
6: v = v + λ ∗ error;
7: upc = M‡kv;
8: uc = (upc + |upc|)/2;
9: for k = 1 to 24 do

10: if uc
k > ūk then uc

k = ūk; end if
11: if uc

k < MIB then uc
k = 0; end if

12: end for
13: error = M̄ iu

c − vr; Niter = Niter + 1;
14: end while
15: Set u = uc;

V. SIMULATION CAMPAIGN

A simulation campaign is next conducted using the in-
dustrial high-fidelity simulator. Due to place limitation, only
the synchronisation phase with faults occurring in thrusters
1, 5, 13, 17 are presented. A total of 450 runs have been
done, 50 in fault free situations and 400 in faulty situations,
the fault time occurrence being chosen randomly. As an
illustration, Fig. 2 and 3 illustrate the behaviour of the
attitude (in degrees) and relative position (in meters) for the
case of stuck-open faults. The 50 fault free runs have been
superposed (red plots).

Robustness and performance metrics are next established
in terms of statistics, see Table II. The proposed metrics are i)

4360



Fig. 2. Behaviour of the attitude (deg.) for 250 runs

Fig. 3. Behaviour of the relative position (m) for 250 runs

the false alarm rate FA%, the true detection rate TD% and the
true recovery rate TRT%; ii) the diagnosis time performance
(DTP) index which is used to quantify the diagnosis time
performance; iii) ∆ΘFDI and ∆XFDI which quantify,
respectively, the maximum attitude error and the maximum
relative position error, before it has been diagnosed by
the FDI unit; iv) ∆ΘFTC and ∆XFTC which quantify,
respectively, the maximum attitude error and the maximum
relative position error, before it has been accommodated
by the FTC unit. These mission-oriented criteria enable to
quantity the worst case of mission performance loss due to
the faults. Note that these worst cases have been observed
during transient behaviours. We argue that since the attitude,
the angular velocity, the relative position and the relative
velocity during the last 200s are within their required value,
the robotic arm can be deployed and the capture of ENVISAT
can be done with success.

VI. CONCLUSION

This paper discussed the design of a model-based FDI-
FTC unit for thruster faults that may occur in the propulsion
unit of the chaser of the ESA’s e.Deorbit mission, a mission
whose aim is to remove the satellite ENVISAT from the
Earth orbit. The proposed solution is based on a class of
nonlinear unknown input observers and a modified version

no fault stuck-open stuck-closed
FA% 0 - -
TD% - 100 100

TRT% - 100 100
mean/std/max mean/std/max

DTP(s) - 0.97/0.14/1.23 -
∆ΘFDI(deg) - 0.90/0.81/3.79 1.47/0.95/4.45

∆XFDI(m) - 0.04/0.04/0.28 0.07/0.09/0.35
∆ΘFTC(deg) - 8.19/1.89/9.97 5.12/1.13/6.47

∆XFTC(m) - 0.27/0.1/0.5 0.24/0.09/0.52

TABLE II
STATISTICS (WORST CASES)

of the nonlinear inverse pseudo control allocation technique.
An intensive simulation campaign conducted within the
industrial e.Deorbit simulator, demonstrates the efficiency of
the approach.
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