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Abstract— Tracking a desired Pointing Direction and simulta-
neously obtaining a reference Angular Velocity (PDAV) around
the pointing direction constitutes a very involved and compli-
cated motion encountered in a variety of robotic, industrial and
military applications. In this paper through the utilization of
global analysis and simulation techniques, the smooth closed-
loop vector fields induced by the geometric PDAV controller
from [1], are visualized to gain a deeper understanding of its
global stabilization properties. First through the calculation of
a coordinate-free form of the closed-loop linearized dynamics,
the local stability of each equilibrium of the system is analyzed.
The results acquired by means of eigenstructure analysis, are
used in predicting the frequency of complex precession/nutation
oscillations that arise during PDAV trajectory tracking; an
important tool in actuator selection. Finally, by utilizing vari-
ational integration schemes, the flow converging to the desired
equilibrium and the flow ”close” to the stable manifold of the
saddle equilibrium of the closed-loop system is visualized and
analyzed. Results offer intimate knowledge of the closed-loop
vector fields bestowing to the control engineer the ability to
anticipate and/or have a rough estimate of the evolution of the
solutions.

I. INTRODUCTION

In aerial or underwater robotics, propulsion is obtained
frequently by pointing a rotating high-speed propeller in
3D space (vectored actuation) [1], [2]. As the motors of
a platform get pointed, they operate in extreme spinning
velocities to produce the needed thrust for the platform
locomotion, i.e., the motors track a reference Pointing Di-
rection and simultaneously a reference Angular Velocity
(PDAV) about the pointing direction. This PDAV process
represents a fundamental control problem for a variety of
robotic, industrial and military applications and constitutes
a very involved and complicated motion. Tiltrotor aircrafts
and surveillance apparatus like radar or sonar sensors are a
few examples, [3]. In UAVs, this occurs in aerial platforms
driven by out-runner motors [1].

To obtain an effective PDAV controller to be utilized
on general robotic platforms, we studied the PDAV control
problem using geometric methods, [4]. A singularity-free
controller was developed, demonstrating improved perfor-
mance for large initial attitude errors and the ability to
negotiate bounded parametric uncertainties. The modeling
and control of an aerial platform (a vectoring tricopter UAV
actuated by three out-runner motors that are pointed in
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3D space) was studied, with the UAV utilizing the PDAV
controller from [4], along with core modifications to cope
with the platforms high precision vectoring requirements [1].

The forenamed and a plethora of other geometric control
works, study the global closed-loop dynamics of smooth
vector fields on nonlinear manifolds, [6], [8], [9]. Due to the
geometric/topological properties of these manifolds, the de-
sired equilibrium in the above systems has an almost global
domain of attraction that excludes the union of the stable
manifolds of its accompanying equilibria [9]. By means of
global analysis, simulation techniques and 3D visualizations,
the influence of these manifolds on the solutions for the
attitude control system of a spherical pendulum and a 3D
pendulum were investigated, [10]. The analysis demonstrated
the nontrivial influences of those manifolds on the solutions.

This work is motivated by the need to gain a deeper under-
standing of the global stabilization properties of the PDAV
controller developed in, [1], since we intend to employ this
controller on an experimental implementation of the aerial
platform described in [1]. Resultantly the analysis techniques
and computational tools described in [10], are employed
in visualizing the smooth closed-loop vector fields of the
PDAV controller, in an attempt to obtain an understanding
of its global closed-loop properties. Our investigation shows
that the computational approach described in [10] for the
visualization of the stable manifold of the saddle equilibrium
did not work for the system at hand, but it was effective
in producing the flow ”close” to it, an equally significant
result since multiple observations about the system were
extracted. An additional result of this was the development
of the capability to estimate the frequency of complex pre-
cession/nutation oscillations arising during PDAV trajectory
tracking, an important tool for actuator selection.

II. KINETICS

The term out-runner motor corresponds to a class of
Brushless Direct Current electric motors that spin their outer
shell about the stationary windings resulting to a motor
that produces far more torque but spin much slower than
standard in-runner motors. We model the moving parts of
an out-runner motor i.e., the motor shell with the attached
magnets, axle, propeller hub and propeller as a rigid body,
see Fig. 1. This was done to obtain an understanding on the
dynamic phenomena that emerge due to the fast rotations
during the pointing procedure. The system is fully actuated
and is shown in Fig. 1. It is modeled as a rigid body of
inertia J and mass m, attached to a frictionless pivot by
a massless axle of length d and it is subject to uniform

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2018 European Control Conference.
Received October 30, 2017.



gravity, the propeller thrust, bFp, drag torque, bMp, and a
control moment bu ∈ R3. A body fixed frame Ib

{
e1, e2, e3

}
,

attached at the center of mass of the rotating rigid body
together with an inertial reference frame IR

{
E1,E2,E3

}
,

are utilized with R(t) ∈ SO(3) the rotation matrix from Ib
to IR. The configuration of the system with respect to our
task is described by a unit vector q(t) ∈ R3,

q(t) = R(t)e3, e3 = [0, 0, 1]T (1)

collinear with the axis of body rotation, and by the compo-
nent of the angular velocity about q(t) given by bω(t)·e3∈R.

←Propeller

←Propeller holder
Flux ring→

Magnets−→

bu

−mgE3
q

dRe3

E1

E2

E3

e1

e2

e3

bFp
bMp

Fig. 1: Free body diagram of the out-runner shell/propeller (blue) connected
to the inertia frame IR by a massless axle (green)

The configuration space can be either described by an
element of S2 = {q ∈ R3|qTq = 1} (the two-sphere) or by
an element of the special orthogonal group SO(3) = {R ∈
R3×3|RTR = I, det[R] = 1}, even though the attitude about
the pointing direction is irrelevant. The plane tangent to the
unit sphere at q is the tangent space TqS2={ξ∈R3|qT ξ=0}.

The equations of motion of the attitude dynamics are,

Jbω̇ + S(bω)Jbω = bu + bMp − S(de3)mgRTE3 (2a)

Ṙ = RS(bω) (2b)

and the constant g is the gravitational acceleration. The cross
product map, S(.) : R3 → so(3), and its inverse map,
S−1(.) : so(3) → R3, are defined in the Appendix. Using
(1) and (2b), the rate of change of q is given by,

q̇ = S(Rbω)q = RS(bω)e3 (3)

III. CONTROL SYSTEM

Before experimentally applying the PDAV controller [1],
deep understanding of its closed-loop properties must be
obtained; to this end, the controller is summarized next. For

a thorough derivation of the controller see [1], [4]. The error
function, [7],

Ψ(q,qd) = 1− qTqd (4)

yields the attitude and angular velocity error vectors, [1],
beq(R,Rd) = RTS(qd)q (5)

beω(bω, bωd,R,Rd) = bω −RTRd
bωd (6)

The control law for a desired pointing direction qd =
Rde3 ∈ S2 and a desired angular velocity bωd=ωde3, is,

bu = η−1J
(
−ηα−(Λ+Ψ)bėq−Ψ̇beq−γs

)
−bf (7a)

α = S(bω)RTRd
bωd −RTRd

bω̇d (7b)
bf = bMp − S(de3)mgRTE3 − S(bω)Jbω (7c)
s = (Λ + Ψ)beq + ηbeω (7d)

where η, γ,Λ ∈ R+, ωd ∈ R, and the terms Ψ̇ and bėq are
given in the Appendix by (40), (41).

The closed loop dynamics under the action of (7) are,

bω̇ = η−1
(
−(Λ+Ψ)bėq−Ψ̇beq−γs

)
−α (8a)

q̇ = RS(bω)e3 (8b)

Since qd=Rde3,
bωd=ωde3,

bω̇d=0, the set of admissible
closed loop equilibria solutions of (8), is given by,

(qe,
bωe)∈{(−qd=exp(πS(e1))exp(ζS(qd))Rde3,−bωd),

(qd=exp(ζS(qd))Rde3,
bωd)|ζ∈R} (9)

with the first element of (9) to correspond to the antipodal
equilibrium and the second to the desired equilibrium.

Finally using the Lyapunov function, [1], [4],

V (Ψ, beq,
beω) =

1

2
sT s =

1

2
‖s‖2 (10)

it was shown that the desired equilibrium (qd,
bωd) is almost

globally exponentially stable.

IV. A PDAV TRACKING CASE

To underline the importance of modeling the system as
in Fig. 1 and to showcase the rich dynamic phenomena
that arise during pointing an out-runner motor, a simulation
is first presented. The system is initially at equilibrium
i.e., (q(0)=e3,

bω=1000e3rad/s). The trajectory performed
under the action of (7) is that of pointing 90o about E1 axis,
90o about E3 axis, while the spinning velocity is maintained
at 1000rad/s. The trajectories are produced using ”minimum
snap” polynomials [11]. The gains Λ, η, γ of (7) are,

Λ = 25·106, η = 12·103, γ = 500 (11)

The inertial matrix used was obtained by a CAD design of
the out-runner shell/propeller assembly of Fig. 1 and is,

J =

3.612 0.762 0
0.762 8.709 0

0 0 6.076

 ·10−5[kgm2] (12)

The closed-loop 3D response (including the initial/final
attitude) is shown in Fig. 2a, showcasing a smooth maneuver.
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The controller (7) achieves high precision tracking of the
desired pointing direction and propeller spinning velocity as
indicated in Fig. 2b. The percentage attitude error (using (4))
remains below Ψ%=8·10−5%, see Fig. 2b (top row) (note
that Ψ%=100% at the maximum pointing error correspond-
ing to 180o wrt., an axis angle rotation i.e., the antipodal
equilibrium). The desired propeller speed is tracked faithfully
with the corresponding tracking error component, beω3 , to
remain below 6·10−3rad/s, see Fig. 2b (bottom row).

Of significant importance is the emergence of non trivial
nutation/precession dynamic oscillations, shown in Fig. 2c
(top and middle rows). Nutation i.e., a swaying/nodding
motion of the pointing axis, is described by a change of the
second Euler angle, θ, of the ”313” sequence. Precession
i.e., the azimuth variation of the pointing axis about E3,
is expressed by a change of the first Euler angle, φ. An
FFT analysis conducted on the nutation/precession signals
reveals high frequency oscillations of 318.6454 Hz (see
Fig. 2c (bottom row)) that the controller compensates for
continuously (see Fig. 2d) to achieve the smooth pointing
response shown in Fig. 2a. Moreover the torque requirements
are revealed as the control effort in Fig. 2d shows that the
pointing actuators must generate up to 0.2Nm despite the
small inertia of the assembly. In the majority of the literature
involving pointing or tilting out-runner motors, the motor
is modeled simply as a source of thrust and torque. As a
result this dynamically rich response is lost, an important
omission, since these phenomena play an important role
during experimental implementations.
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Fig. 2: PDAV trajectory with steady propeller velocity at 1000rad/s. (2a)
Attitude maneuver with projections (green). (2b) Top: Percentage pointing
error by (4), Bottom: Propeller spin error. (2c) Top: Precession rate φ̇
(black). Middle: Nutation rate θ̇ (blue). Bottom Left: Precession frequency
(black) by FFT. Bottom Right: Nutation frequency (blue) by FFT. (2d)
Control effort, by (7).

V. LINEARIZATION

In the previous section, the importance of proper modeling
was shown. The goal of this work is to study the closed-loop
equilibrium properties explicitly; thus a coordinate-free form
of the linearized dynamics of (8) is developed and the local
stability of each equilibrium is analyzed. To this end, the
closed-loop equations are linearized about each equilibrium
using suitable expressions for the variation of the states,
ensuring that the perturbation of the equilibrium lies on the
configuration space. This is achieved as in [7], by using
the exponential map, (39), to define the perturbation of the
equilibrium in terms of a perturbation parameter ε as,

q(t, ε) = exp(εS(ξ))q(t) (13)
R(t, ε) = exp(εS(ξ))R(t) (14)

with ξ ∈ TqS2. The perturbation of the angular velocity is,
bω(t, ε) = bω(t) + εδw(t) (15)

and the curve δw(t) ∈ R3. Note that if the perturbation
parameter ε = 0 then (q(0, 0), bω(0, 0)) = (qe,

bωe),
meaning that, (q(t, 0), bω(t, 0)) = (qe,

bωe),∀t ∈ [0,∞).
To save space, onwards the dependency on time t is dropped.
By utilizing (13) the infinitesimal variation of q(t, ε) is,

δq =
d

dε

∣∣∣
ε=0

exp(εS(ξ))q = S(ξ)q (16)

To obtain the coordinate-free form of the closed-loop
dynamics, we substitute (13)-(15) into (8), differentiate both
sides of the resulting equation wrt., ε, take ε=0 and apply
several vector identities (see [5] for details) to get:

ẋ =

[
ξ̇
δbω̇

]
=

[
Ξξ Ξω

Ωξ Ωω

] [
ξ
δbω

]
= Ax (17)

and the terms of the matrix A ∈ R6×6 are given by,

Ξξ = qqTS(Rbω),Ξω = (I− qqT )R

Ωξ = RTS(Rd
bω̇d)−S(bω)RTS(Rd

bωd)

−η−1
{
beq(R

beω)TS(Rbeq)

+beq(R
beq)

TS(Rbeω)+bėqq
T
d S(q)

+(Λ+Ψ)
(
RTS(S(q̇d)q+S(qd)q̇)

−RTS(qd)S(RS(bω)e3)−RTS(q̇d)S(q)

−S(bω)RT
(
S(S(qd)q)− S(qd)S(q)

))
+
(
beq(R

beω)TR+
(

Ψ̇+γ(Λ+Ψ)
)
I
)
·

RT
(
S(S(qd)q)− S(qd)S(q)

)
+γbeqq

T
d S(q)

−(beq(R
beq)

TR+ηγI)RTS(Rd
bωd)

}
Ωω = S(RTRd

bωd)−η−1
{

(beq(R
beq)

TR+ηγI)

+(Λ+Ψ)
(
S(beq)−S(RTqd)S(e3)

) }
Consequently by substituting the actual points of the

equilibria solutions in A their eigen-structure can now be
studied.
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Due to the peculiarity of the control task i.e., we demand
pointing stabilization and simultaneously the regulation of
the angular velocity about the pointing direction to a de-
sired value, we parametrized the attitude configuration as
a spherical pendulum through the unit vector q, because
the attitude of the rigid body about the pointing direction
is irrelevant. Moreover, because a spherical pendulum has
two rotational degrees of freedom, it holds that qT ξ=0 and
qTRbω=0, meaning that a spherical pendulum does not
have a third component of angular velocity. In contrast to
this, in our system the rotating components of the out-runner
motor/propeller assembly do not have the symmetry of the
spherical pendulum; thus three rotational degrees of freedom.
Therefore, for our system, qTRbω 6= 0 and the constraint:

Cx =
[
qT 01×3

] [ ξ
δbω

]
= 0 (18)

in regards to ξ should be satisfied at all times. Thusly the
state vector x should lie in the null space of C ∈ R1×6.
However if x(0) satisfies (18), then x(t) complies with (18),
for all t, due to the structure of (8) and (17), i.e., (18) and
its derivative were embedded in (17) during the linearization
procedure.

VI. EIGEN-STRUCTURE OF (qe,
bωe)

The closed loop properties of (7) are investigated by
selecting the desired signals to resemble actual reference
commands that arise during motor operation on the aerial
platform. Consequently, the reference command is given by,

qd=Rde3,Rd=I,bωd=ωde3,ωd=1000
rad

s
,bω̇d=0 (19)

Using (9), the aforementioned choice corresponds to two
equilibrium solutions. The desired equilibrium,

(qe,
bωe) = (e3, ωde3), ωd = 1000[rad/s] (20)

and the antipodal equilibrium,

(qe,
bωe) = (−e3,−ωde3), ωd = 1000[rad/s] (21)

The gains of the controller are chosen as in (11).

A. Desired Equilibrium

Using (20) with (17) the eigenvalues λi, and their corre-
sponding eigenvectors vi, are found using MATLAB as,

λ1 = (−0.0141 + 1.0055i)·103,

v1 = 0.0007ie1 + 0.0007e2 − 0.7071e4 + 0.7071ie5,

λ2 = (−2.5693 + 0.0055i)·103,

v2 = −0.0003ie1 + 0.0003e2 + 0.7071ie4 − 0.7071e5,

λ3 = 0,v3 = e3, λ4 = −0.5·103,v4 = e6

λ5 = λ̄1,v5 = v̄1, λ6 = λ̄2,v6 = v̄2 (22)

where ei ∈ R6, is a base element of the Euclidean space
and we have two complex conjugate pairs of eigenvalues
(λ1,5, λ2,6) and two real eigenvalues (λ3, λ4) resulting to six
linearly independent associated eigenvectors (two complex
conjugate pairs (v1,5,v2,6) and two real (v3,v4)).

The base of the null space of (18) is given by,

N (C) = {e1, e2, e4, e5, e6} (23)

For ak ∈ R, ck ∈ C the solution of (17) is given by, [12],

x(t) =

4∑
k=3

ake
λktvk +

2∑
k=1

cke
λktvk + c̄ke

λ̄ktv̄k (24)

where the complex conjugate operation is denoted by the
bar as c̄k on ck e.t.c,. Inspecting (23) it is clear that the
eigenvector associated with λ3 does not satisfy (18) since
it does not belong to the linear span of (23). Resultantly
a3 = 0, ∀ x(0) that satisfy (18). Thus λ3 does not partake in
(24). The study of the behavior of x(t) is not difficult since
we have Re[λ2, λ6] < λ4 < Re[λ1, λ5] < 0. Therefore the
equilibrium (20) is an asymptotically stable focus. Namely
we have a rotation with a faster contraction in the (v2,v6)-
plane, a fast contraction in the direction of v4 and a rotation
with a slower contraction in the (v1,v5)-plane.

B. Antipodal Equilibrium

Using (21) and (17), the eigenvalues λi, and their corre-
sponding eigenvectors vi, are found using MATLAB as,

λ1 = (−0.7836 + 0.7513i)·103, λ5 = λ̄1

v1 = (−0.0005 + 0.0005i)e1 + (0.0005 + 0.0005i)e2

−0.7071ie4 + 0.7071e5,v5 = v̄1

λ2 = (2.3670 + 0.2487i)·103, λ6 = λ̄2

v2 = 0.0003e1−0.0003ie2+0.7071e4+0.7071ie5,v6 = v̄2

λ3 = 0,v3 = e3, λ4 = −0.5·103,v4 = e6 (25)

We have two complex conjugate pairs of eigenvalues
(λ1,5, λ2,6) and two real eigenvalues (λ3, λ4) resulting to six
linearly independent associated eigenvectors (two complex
conjugate pairs (v1,5,v2,6) and two real (v3,v4)).

The base of the null space of (18) is again given by (23),
and for ak ∈ R, ck ∈ C the solution of (17) is given by, (24).
Inspecting (23) it is clear that the eigenvector associated with
λ3 does not satisfy (18) since it does not belong to the linear
span of (23). Resultantly a3 = 0, ∀ x(0) that satisfy (18).
Again λ3 does not partake in (24).

To study the behavior of x(t) we note that since we
have Re[λ1, λ5]<λ4<0<Re[λ2, λ6], the equilibrium (20) is
a saddle point. Specifically we have a rotation with a faster
contraction in the (v1,v5)-plane, a fast contraction in the
direction of v4 and a rotation with a fast dilation in the
(v2,v6)-plane.

VII. PRECESSION/NUTATION FREQUENCY ESTIMATION

In Section IV, studying a typical PDAV trajectory, high
frequency nutation/precession oscillations were observed.
The emergence of these non trivial nutation/precession dy-
namic oscillations (see Fig. 2c (top and middle rows)), are
of significant importance, since suitable pointing actuators
need to be able to handle/negotiate such high frequency
oscillations. Thus a systematic method of estimating the
frequency of the nutation/precession oscillations is needed.
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Furthermore, the ability to obtain estimates of the nu-
tation/precession oscillations frequency provides a tool in
gaining understanding on the PDAV closed-loop intricacies,
a tool for actuator selection and finally a criterion on the
feasibility of an experimental implementation, i.e., if for a
required thrust no suitable pointing actuators exist or the
actuators are bulky for the needed application, then other
means of thrust generation should be considered.

Our approach in developing this tool originates from an-
alyzing the process of trajectory tracking. During trajectory
tracking, initially the states of the system are at equilibrium
and by gradually/smoothly shifting the reference PDAV
command, the global equilibrium of the system changes to
a new preferred state. This procedure can be thought off
roughly as a concatenation of infinitesimal flows (solutions)
chasing an infinitesimally shifting reference PDAV com-
mand. Thus, we assume that a valid estimate of the frequency
of the nutation/precession oscillations can be obtained, by
using the solutions of the linearized system, (24), in the
neighborhood of the desired equilibrium. Furthermore this
frequency estimate can be extended to the entire duration
of the trajectory tracking maneuver, if the maneuver is
performed in a sufficiently smooth and gradual manner. This
assumption guides our analysis with the developed procedure
to follow next.

First the eigenvalues, λi, and eigenvectors, vi, from Sec-
tion VI-A and the fact that a3=0 ∀ x(0) that satisfy (18), are
applied to (24) to find the solutions of the linearized system
in the neighborhood of the equilibrium. They are given by,

x(t)=a4e
λ4te6+2

2∑
k=1

{
Re[ck](c(µkt)Re[vk]−s(µkt)Im[vk])

−Im[ck](c(µkt)Im[vk]+s(µkt)Re[vk])
}

(26)

where c(.)= cos(.), s(.)= sin(.) and πk, µk are obtained by,

λk = πk + µki

Using the ”313” Euler sequence, the expression for the
precession rate, φ̇ and nutation rate, θ̇ as a function of bω
is, φ̇θ̇

ψ̇

=


s(ψ)
s(θ)

c(ψ)
s(θ) 0

c(ψ) −s(ψ) 0

− s(ψ)c(θ)
s(θ) − c(ψ)c(θ)

s(θ) 1


bω1
bω2
bω3

 (27)

where ψ is the third Euler angle denoting the rotation angle
of the out-runner shell about its own axis e3. Additionally,

x(t) · e6 = δbω3 = a4e
λ4t = a4e

−0.5·103t (28)

and (28) with (15) imply that in the neighborhood of the
desired equilibrium bω3 ≈ ωd because the time constant,
τ , obtained from (28) is τ = 0.002sec. Thus the propeller
spinning velocity is regulated to the desired value extremely
fast. Since bω3 = ψ̇ + φ̇c(θ) and ψ̇ ≫ φ̇, it holds that

bω3 ≈ ψ̇ = ωd and the rotation angle of the propeller ψ(t)
in the neighborhood of the desired equilibrium is,

ψ(t) ≈ bω3t+ ψ(t = 0) = ωdt+ ψ0 (29)

Substituting (29) and the components δbω1 = x(t) · e4,
δbω2 = x(t) · e5 in (27), for the nutation rate θ̇ we get,

θ̇=2c(ωdt+ψ0)

2∑
k=1

e4·
{

Re[ck](c(µkt)Re[vk]−s(µkt)Im[vk])

−Im[ck](c(µkt)Im[vk]+s(µkt)Re[vk])
}
−

2s(ωdt+ψ0)

2∑
k=1

e5·
{

Re[ck](c(µkt)Re[vk]−s(µkt)Im[vk])

−Im[ck](c(µkt)Im[vk]+s(µkt)Re[vk])
}

(30)

To simplify (30), we inspect the eigen-
values of Section VI-A and observe that
Re[λ2]=π2=−2569.3≪Re[λ1]=π1=−14.1. Resultantly
the solution contracts extremely fast in the (v2,v6)-plane
and the nutation rate can be approximated by,

θ̇ ≈ 2c(ωdt)
{
C̆1c(µ1t) + D̆1s(µ1t)

}
−2s(ωdt)

{
C̆2c(µ1t) + D̆2s(µ1t)

}
(31)

C̆1 = c(ψ0)C1−s(ψ0)C2, D̆1=c(ψ0)D1 − s(ψ0)D2

C̆2 = c(ψ0)C2 + s(ψ0)C1, D̆2=c(ψ0)D2 + s(ψ0)D1

Ci = Re[c1]Re[v1i+3 ]− Im[c1]Im[v1i+3 ], i = 1, 2

Di = −Re[c1]Im[v1i+3 ]− Im[c1]Re[v1i+3 ], i = 1, 2

Employing product-to-sum identities and rearranging we get,

θ̇ ≈ (C̆1 − D̆2)c((ωd+µ1)t) + (D̆1 − C̆2)s((ωd+µ1)t)

+(C̆1 + D̆2)c((ωd−µ1)t)− (D̆1 + C̆2)s((ωd−µ1)t)

Additionally using (17) for several values of ωd we observed
that µ1 ≈ ωd. Resultantly the terms ωd+µ1 dominate the
oscillation frequency, fn, since ωd+µ1 ≫ ωd−µ1 and the
final estimation of the nutation oscillation frequency is,

fn(t) ≈ ωd(t)+µ1(t)

2π
(32)

Thus, for the desired command in Section VI, the fre-
quency obtained by means of FFT analysis (see Fig. 2c
(bottom row)) gives that fnFFT

= 318.6454Hz while using
(32) we obtain fn = 319.18Hz which is almost identical
to the measured frequency fnFFT

. This validates the devel-
oped formula, i.e., (32), and we are now equipped with a
method to estimate the high frequency nutation oscillations
during PDAV trajectory tracking in the neighborhood of the
equilibrium and thus during a smooth PDAV trajectory.

Note that in the preceding analysis we chose to develop an
expression that estimates the frequency of nutation oscilla-
tions but the procedure can be repeated using the precession
component of (27) to get an expression similar to (32).
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VIII. FLOW ”CLOSE” TO THE PDAV EQUILIBRIA

At the antipodal saddle equilibrium the conditions of the
Hartman-Grobman theorem [13], and the Stable Manifold
Theorem [13], are satisfied. Thus a local stable manifold,

Ws
loc(−qd,−bωd)={x∈U|∀t≥0,

lim
t→∞

ϕt(x)=(−qd,−bωd)} (33)

exist tangent to the stable eigenspace Es of the linearized
system. Note that ϕt in (33) is the forward flow map.
Furthermore the global stable manifold, Ws, can be obtained
by letting points in Ws

loc flow backwards in time:

Ws(−qd,−bωd)=
⋃
t≥0

ϕ−t
(
Ws

loc(−qd,
bωd)

)
(34)

where U ⊂ S2×R3 a neighborhood of (21), and ϕ−t is the
backward flow map [13].

The existence of the stable manifold Ws has significant
implications on the closed-loop system since trajectories on
it converge to the antipodal equilibrium while trajectories
near it need significant time to converge to the desired
equilibrium.

However, we are more interested in the flow ”close” to the
invariant manifold since in an experimental implementation,
disturbances during operation ensure that the states will
not remain on the invariant manifold. Additionally during
PDAV trajectory tracking, the existence of disturbances could
produce a shift of the state close to the invariant manifold.
This event could result to irregular behavior and a goal of
this paper is to comprehend the severity of this event. Thus
obtaining an understanding of the flow ”close” to the stable
manifold of (−qd,−bωd) is more useful in our case.

A. Flow ”close” to the Antipodal Equilibrium

We follow the method presented in [14], and later used in
[10]: The stable eigenvectors v1, v4, v5, of (21) from Section
VI-B are used to generate the local stable eigenspace Es

loc:

Es
loc(−qd,−bωd)={(q, bω) ∈ S2×R3|

q = exp (S(∆q{ε cos(ϑ)(σv1 + σ̄v5)}) (−qd), σ ∈ C,
bω = −bωd + ∆ω(ε cos(ϑ)(σv1+σ̄v5) + ς sin(ϑ)v4),

ε, ς≪1, ϑ∈[0, 2π),∆q=[I,0],∆ω=[0, I] ∈ R3×6) (35)

A distance metric on the tangent bundle is defined as:

dq,ω((q1,
bω1),(q2,

bω2))=Ψ(q1,q2)+‖bω1−bω2‖(36)

This distance metric will be used to check if the method
proposed in [10] for visualizing the stable manifold can also
be used for (8) and additionally as a measure of proximity
to (21). The backward flow map ϕ−t and forward flow map
ϕt are calculated using variational integrators [10], [15].

We pick ten points from (35), with ε=ς=1·10−6, σ=1+1i.
The trajectories evolving on S2 are shown in Fig. 3 where
each colored path stems from one of the ten selected points.
The angular velocity about the pointing direction is indicated
by the color of the trajectories according to the colorbar.

Several observations regarding trajectories that converge
in (35) and come ”close” to Ws are summarized next:

The trajectories near the saddle are approximately loga-
rithmic spirals that as they move away from (21) they wrap
around S2 in an intricate manner. The angular velocity about
the pointing direction converges to −bωd as q approaches
the saddle, even from extreme positive or negative initial
spinning velocities (see Fig. 3e). Some of the trajectories
that come ”close” to Ws wrap around S2 multiple times.
Resultantly even if Ws is of zero measure, during operation
q might approach arbitrary close to the saddle (−qd,−bωd).

(a) t = 0.0366. (b) t = 0.0409.

(c) t = 0.0420. (d) t = 0.0433.

(e) t = 0.0450. (f) t = 0.0450.

Fig. 3: Backwards flow represented by {ϕ−t(p)}t>0, p∈(35) extremely
”close” to the stable manifold of the saddle (−qd,−bωd). The trajectories
are depicted on S2 and the magnitude of the angular velocity about the
pointing direction is indicated by the color of the trajectories according to
the colorbar. (3a-3d) Four points from (35), integrated backwards in time
and shown for instances of t. (3e-3f) Flow shown in both sides of S2 for
ten points.

In an attempt to produce Ws(−qd,−bωd), several simu-
lations were conducted using ε ≪ 1·10−6, ς ≪ 1·10−6

to find points, ps, in Ws
loc(−qd,−bωd). To check that

the produced points actually belong to Ws
loc, the forward

flow map ϕt and (36) were used to check if ϕt(ps) →
(−qd,−bωd) as t → ∞. The flow is shown in Fig. 4a,
and the values of dq,ω((−qd,−bωd),ϕt(ps)) in Fig. 4b,
both indicating that despite approaching very ”close” to
(−qd,−bωd) the flow eventually converges to (qd,

bωd).
Thus despite the fact that Es

loc(−qd,−bωd) is tangent to
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Ws
loc(−qd,−bωd), points calculated using Es

loc are ”close”
but do not necessarily belong to Ws

loc. Thus the method
proposed in [10] for the calculation of Ws(−qd,−bωd) by
ϕ−t does not work here for (8).

(a)
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(b)

Fig. 4: Forward flow represented by {ϕt(ps)}t>0, for the ten points
depicted in Fig. (3). (4a) Trajectories evolving on S2 with bω ·e3 illustrated
by the color of the trajectories according to the colorbar. (4b) Distance
metric dq,ω((−qd,−bωd),ϕ

t(ps)) during {ϕt(ps)}t>0.

B. Flow ”close” to the Desired Equilibrium

On the grounds of gaining deeper understanding of the
global stabilization properties of (8), the closed-loop vec-
tor fields converging to the desired equilibrium are also
visualized. This investigation is extremely important, more
important than the investigation of Section VIII-A, since
this open dense set and the trajectories produced by the
vector field dominate the dynamic behavior of the closed-
loop system. Thus an intimate knowledge of the dominant
closed-loop vector field bestows to the control engineer the
ability to anticipate the response of the system, a critical skill
in an experimental implementation. Because the desired equi-
librium is a stable focus, we do not utilize the eigenvectors
from Section VI-A. It is sufficient to select points ”close”
enough to (20), as:

(qξ,
bωδω)|(qd,bωd)=

{
(q, bω) ∈ S2×R3|

q = exp (S(ε(cos(ϑ)e1 + sin(ϑ)e2)) qd,
bω = bωd + ε(cos(ϑ)e1 + sin(ϑ)e2) + ςe3,

ε = 1·10−6, ς = 1·10−7, ϑ∈[0, 2π)
}

(37)

Similar to Section VI-A, we pick ten points from (37), and
use the backward flow map ϕ−t in evolving backwards in
time the trajectories that converge to the selected points. The
generated trajectories of the flow of (8) are shown in Fig. (5).

Several observations regarding the trajectories of the dom-
inant dense set are summarized next:

The trajectories are spirals (Fig. 5a-5c) that as they move
away from the desired equilibrium and past the antipodal
equilibrium they are drawn into circular orbits that eventually
wrap around S2 as t gets sufficiently large, see Fig. 5d. The
requirement of high precision trajectory tracking demanded
the use of high valued gains, see (11). As a result, the flow
evolves extremely fast, see Fig. 5d. In regards to the angular
velocity about the pointing direction, as q moves away from
the desired equilibrium, bω·e3 diverges from bωd. Moreover
bω·e3 changes sign as q passes the equator (see change in

color from Fig. 5b to Fig. 5c), remains negative as q moves
past the antipodal equilibrium and finally begins to increase
as q moves in circular orbits or wraps around S2.

The influence of the antipodal equilibrium and
Ws(−qd,−bωd) in the evolution of the solutions is
apparent. The spiral trajectories produced by the backward
flow map ϕ−t transform into circular orbits and take
intricate paths as t gets sufficiently large, see Fig. 5d-5e.
More importantly, the trajectories indicate that a strong
possibility exists during a step PDAV maneuver that q will
first pass close to the antipodal equilibrium before finally
converging to the desired equilibrium. This possibility
increases if Ψ(0)>1 i.e., for pointing step commands of
90o or more wrt., an equivalent axis angle rotation. Thusly,
this controller is better suited for high precision trajectory
tracking, i.e., Ψ(0)<1.

(a) t = 0.0058. (b) t = 0.0068.

(c) t = 0.0083. (d) t = 0.0250.

(e) Detail near −qd
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(f) Distance metric, (36)

Fig. 5: Backwards flow represented by {ϕ−t(p)}t>0, p∈(37). The
trajectories are depicted on S2 with bω·e3 illustrated by the curves
color according to the colorbar. (5a-5d) Ten points from (37), integrated
backwards in time and shown for instances of t. (5e) Detail of the flow near
the antipodal equilibrium. (5f) Forward flow represented by {ϕt(p)}t>0,
p∈(37).

IX. CONCLUSIONS

Using global analysis and simulation techniques, the
smooth closed-loop vector fields induced by the geomet-
ric PDAV controller from [1], was visualized to gain a
deeper understanding of its global stabilization properties. A
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coordinate-free form of the closed-loop linearized dynamics
was calculated and the local stability of each equilibrium
was analyzed. Using the solution of the linearized system, an
estimate of the frequency of the complex precession/nutation
oscillations that arise during PDAV trajectory tracking was
obtained. This constitutes an important tool for actuator
selection and as a criterion on the feasibility of an experimen-
tal implementation. Finally, through the use of variational
integration schemes, the flow converging to the desired
equilibrium and the flow ”close” to the stable manifold of
the saddle equilibrium was visualized and analyzed. This
analysis allowed the extraction of numerous observations
regarding the shape of the flow, the profile of the angular
velocity, the transient behavior of the solutions and finally
the influence of the saddle equilibrium on the evolution of
the solutions. These observations offer intimate knowledge of
the closed-loop vector field bestowing to the control engineer
the ability to ”anticipate” the response of the system, a
critical skill in an experimental implementation. Since the
PDAV controller from [1] can be applied to general robotic
platforms, the insights and understanding gained by this
analysis are applicable to a broad range of systems that
utilize it and not only to a vectoring out-runner motor.
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APPENDIX

Cross product map identifying the Lie algebra so(3) with
R3. For r ∈ R3:

S(r)=[0,−r3, r2; r3, 0,−r1;−r2, r1, 0]
S−1(S(r))=r

(38)

Exponential map using the Rodrigues formulation [7],

exp(εS(ξ))=I+S(ξ) sin ε+S(ξ)2(1− cos ε), ξ∈R3 (39)

Time derivative of (4) and (5) respectively,

Ψ̇ = Rbeq ·Rbeω (40)
bėq = RT

(
q̇d × q + qd × q̇

)
− S(bω)beq (41)
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