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Abstract 

Dynamic Singularities are shown for free-floating space manipulator 
systems where the spacecraft moves in response to manipulator 
motions without compensation from its attitude control system.  At a 
dynamic singularity the manipulator is unable to move its end-effector 
in some inertial direction; thus dynamic singularities must be 
considered in the design, planning, and control of free-floating space 
manipulator systems.  The existence and location of dynamic 
singularities cannot be predicted solely from the manipulator kinematic 
structure because they are functions of the dynamic properties of the 
system, unlike the singularities for fixed-base manipulators.  Also 
analyzed are the implications of dynamic singularities to the nature of 
the system’s workspace. 

 
I. Introduction 
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SPACE ROBOTICS: DYNAMICS AND CONTROL 

Robotic manipulators will play important roles in future space missions.  The control 
of such space manipulators poses planning and control problems not found in 
terrestrial fixed-base manipulators due to the dynamic coupling between space
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manipulators and their spacecraft.  A number of control techniques for such systems 
have been proposed; these schemes can be classified in three categories.  In the first 
category, spacecraft position and attitude are controlled by reaction jets to 
compensate for any manipulator dynamic forces exerted on the spacecraft.  In this 
case, control laws for earth-bound manipulators can be used, but the utility of such 
systems may be limited because manipulator motions can both saturate the reaction 
jet system and consume relatively large amounts of attitude control fuel, limiting the 
useful life of the system [1].  In the second category, the spacecraft attitude is con-
trolled, although not its translation, by using reaction wheels or attitude control jets 
[2,4]. The control of these systems is somewhat more complicated than that of the 
first category, although a technique called the Virtual Manipulator (VM) can be used 
to simplify the problem [4-7].  The third proposed category assumes a free-floating 
system in order to conserve fuel or electrical power [4,6-11].  Such a system permits 
the spacecraft to move freely in response to manipulator motions.  These too can be 
modeled using the VM approach [6,7].  Past work on the control of free-floating 
systems generally has proposed particular algorithms for free-floating systems and 
attempted to show their validity on a case by case basis [8-11].  However, algorithms 
which do not take into full account the spacecraft kinematics or dynamics have 
occasional problems [10,11].  This paper shows that these problems may be 
attributed to dynamic singularities which are not found in earth bound manipulators.  
These dynamic singularities must be considered in the design, planning, and control 
of these systems because of their important effects on the performance of free-
floating space manipulators. 

 
The existence of dynamic singularities is shown first by writing the kinematics 

and conservation equations in a compact, explicit form through the use of 
barycenters [12,13].  Then it is shown that the end-effector inertial linear and angular 
velocities can be expressed solely as a function of the velocities of the manipulator 
controlled joint angles, and that they do not depend upon the uncontrolled linear and 
angular velocity of the spacecraft.  Next a Jacobian matrix, J*, is derived which 
relates the end-effector’s linear and angular velocity in inertial space to the joint 
angular velocities.  The rank of this Jacobian matrix is demonstrably deficient at 
given points in the manipulator’s joint space which results in the manipulator being 
unable to move its end-effector in some direction in inertial space.  These singular 
points cannot be determined solely from the kinematic structure of the system and 
instead depend upon a system’s masses and inertias; hence they are called dynamic 
singularities.  Dynamic singularities are path dependent because generally they are 
not fixed in a manipulator’s inertial workspace.  This is because the end-effector 
location in inertial space depends upon the history of the spacecraft attitude which is 
determined by the path taken by the end-effector.  Finally, some regions in the 
inertial workspace exist, called the Path Independent Workspace (PIW), where 
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dynamic singularities will not exist for any path taken within this region, as opposed 
to other parts of the workspace, called the Path Dependent Workspace (PDW), where 
the occurrence of dynamic singularities depends upon the path taken by the 
manipulator’s end-effector. 

 

II. Jacobian Construction for Free-floating Manipulators 
End-effector position and orientation can be obtained directly for a manipulator on a 
fixed-base or on a controlled vehicle as a function of a system’s independent 
coordinates, namely of the manipulator joint angles and base position and attitude.  
However, end-effector position and orientation cannot be obtained directly in free-
floating space manipulator systems because spacecraft position and attitude are 
coordinates which depend upon the history of a manipulator’s motion.  Still, 
provided that some realistic assumptions hold, a Jacobian J* can be written for the 
system and provide a linear relationship between the controlled manipulator’s joint 
angular rates q.   and the end-effector linear and angular inertial velocities, r.  E, ωE 
such that: 

 x.   = [ r.  E , ωE ]T = J* q.     (1) 

Dynamic singularities arise when J* becomes deficient.  This Jacobian plays a 
similar role to Jacobians used by many fixed-base manipulator control algorithms 
which are functions of manipulator kinematics only.  For example, Umetani and 
Yoshida proposed a resolved rate controller based on J*, called a Generalized 
Jacobian [9].  However, the construction of J* depends on a system’s dynamics. 

 
Here, the kinematic and dynamic relationships are formulated for the free-

floating manipulator system depicted in Figure 1 and used to find an expression for 
J*, based on the use of the barycenters [12,13].  This approach has similarities to the 
VM method and has the advantage that the resulting dynamic equations are relatively 
general, compact and explicit.  The body 0 in Figure 1 represents the spacecraft and 
the bodies k (k=1,...,N) represent the N manipulator links.  Manipulator joint angles 
and velocities are represented by the N×1 column vectors q and q.  .  The spacecraft 
can translate and rotate in response to the manipulator movements.  Finally, the 
manipulator is assumed to have revolute joints and an open-chain kinematic 
configuration so that a system with an N degree-of-freedom (DOF) manipulator will 
have 6+N DOF. 

 
To derive J*, we must write r_.  E and ω_ E as functions of the links and spacecraft 

inertial angular velocities ω_ i (i=0,...,N) and ultimately of the joint rates q.  .  From 
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Figure 1, it can be seen that the vector from the inertially fixed origin O to k body’s 
center of mass (CM), R_ k, is given by: 

 R_ k = r_ cm +  ρ_ k  k = 0,...,N (2) 

where r_ cm and ρ_ k are defined in Figure 1.  The end-point position vector, r_ E, can 
be derived from R_ N as: 

 r_ E = r_ cm + ρ_ N + r_ N  (3) 
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Figure 1.  A free-floating space manipulator system. 

 
The ρ_ k vectors are defined uniquely by the free-floating system configuration 

and, thus, they can be expressed as sums of the weighted, body-fixed vectors l_ i, and 
r_ i (i=0,...,N), defined in Figure 1.  Indeed, from Figure 1 we have the following N 
equations in N+1 unknowns: 

 ρ_ k - ρ_ k-1 = r_ k-1 - l_ k k = 1,...,N (4) 

Since the ρ_ k vectors are defined with respect to the system CM, it holds that: 

 ∑
k=0

N
 mk ρ_ k = 0 (5) 

where mk is the mass of body k.  Equations (4) and (5) can be solved for ρ_ k as a 
function of r_ k and l_ k, yielding: 
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 ρ_ k = ∑
i=1

k
 ( r_i-1 - l_i )  µi   - ∑

i=k+1

N
 ( r_i-1 - l_i ) (1-µi)  k = 0,...,N (6) 

where µi represents the mass distribution defined by: 

 µi ≡ 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

 0      i = 0

 ∑
j=0

i-1

  mj
M      i = 1...N

 1      i = N+1

   (7) 

M is the total system mass.  Equation (6) can be simplified using the notion of a 
barycenter (BC) [12,13].  The barycenter location for the ith body with respect its CM  
is defined by the body fixed vector c_ i shown in Figure 2 and given by: 

 c_ i = l_ i µi + r_ i (1-µi+1) i = 0,...,N (8) 

The barycenter of the ith body can be found equivalently by adding a point mass 
equal to Mµi to joint i, and a point mass equal to M(1-µi+1) to joint i+1, forming an 
augmented body [12,13].  The barycenter is then the center of mass of the augmented 
body as shown in Figure 2.  Figure 2 also shows a set of body-fixed vectors which 
are defined by: 
 c_i

*  = - c_ i (9a) 

  r_i
*  = r_ i  - c_ i (9b) 

 l_i
*  = l_ i  - c_ i (9c) 

Using Equations (9), Equation (8) can be rewritten as: 

 M µi l_i
*   +  M (1-µi+1) r_i

*
   +  mi c_i

*   =  0 (10) 

It can be shown then that Equation (6) can be written in a compact and general form 
as: 

 ρ_ k = ∑
i=0

N
 v_ ik k = 0,...,N (11) 

where the barycentric vectors v_ ik are given by the following selection law: 

 v_ ik ≡ 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

 r_i
*       i<k 

 c_i
*

         i=k 
 l_i

*       i>k 
   (12) 
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See Reference [15].  Equation (11) reveals an interesting characteristic of space 
manipulators, namely that the position of the center of mass of link k in inertial space 
depends on the position of all links, including the ones after link k as well as on the 
position of the base.  This is to be contrasted with the case of earth-bound manipula-
tors where the position of a link depends on the positions of the previous links only. 
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Figure 2.  Definition of barycenters and vectors r_i
* , l_i

* , c_i
* . 

Since each v_ ik is defined by vectors fixed in body i which rotates with angular 
velocity ω_ i, and because we assume that the manipulator has no prismatic joints, the 
time derivative of ρ_ k is simply given by: 

 ρ_.  k = ∑
i=0

N
  ω_ i × v_ ik k = 0,...,N (13) 

Differentiating Equations (3) and combining the results with Equation (13) yields the 

following expression for the end-effector inertial velocity r_.  E: 

  r_.  E = r_.  cm + ∑
i=0

N
  ω_ i × v_ iN +   ω_ N × r_ N  (14) 

For this system the linear momentum vector with respect to the origin O is: 

 p_  = M r_.  cm  =   ∑
k=0

N
 mk R_

.
 k  (15) 

In the absence of external forces, and assuming zero initial CM velocity, p_  is zero.  
Then r_.  cm is zero and r_ cm is constant.  We can assume that r_ cm is zero without loss 
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of generality, which is equivalent to choosing the inertial origin, O, to be at the CM.  
Consequently: 

  r_.  E = ∑
i=0

N
  ω_ i × v_ iN +   ω_ N × r_ N   ≡  ∑

i=0

N
  ω_  i × v_ iN

'  (16) 

where v_ iN
' is equal to v_ iN for all i,k except for v_ NN

', for which it is given by v_ NN
' 

= v_ NN + r_ N. 

 

The end-effector inertial angular velocity required to find J*, see Equation (1), is 
the inertial velocity of the last body in the chain given by: 

 ω_ E = ω_ N (17) 

The inertial angular velocity ω_ j of the jth body can be written as a function of the 
relative angular velocity of body i with respect to body i-1 (the joint velocity of joint 
i), called ω _ i

i-1 , as: 

 ω_ j = ω_ 0 + ∑
i=1

j
  ω_ i

i-1       j = 1,...,N (18) 

Equations (16), (17) and (18) relate the end-effector linear and angular velocities 
in inertial coordinates r_.  E and ω_ E to the controlled relative angular velocities ω _ i

i-1  
and to the spacecraft inertial angular velocity, ω_ 0. Although ω_ 0 is uncontrolled, it 
can be found as a function of the controlled joint rates by using the principle of the 
angular momentum conservation.  The system angular momentum vector with 
respect to the inertial origin is given by: 

 h_  = r_ cm× p_   +  ∑
k=0

N
  { I_ k • ω_ k + mk ρ_ k × ρ_

.
 k } (19) 

where I_ k is the inertia dyadic of body k with respect to its center of mass.  Since we 
assumed an initial zero linear momentum vector p_ , the first term in the right side of 
Equation (19) is identically equal to zero and the angular momentum with respect to 
O is equal to the angular momentum with respect to the system CM, h_ cm.  Using 
Equations (11) and (13), Equation (19) can be written as [15]: 

 h_  = h_ cm = ∑
j=0

N
 ∑
i=0 

N
 ∑
k=0

N
  D_ ijk • ω_ j  (20) 

where: 

 D_ ijk = I_ i δijδjk + mk {( v_ ik • v_ jk) 1_  - v_ jk v_ ik} i, j, k = 0,...,N  (21) 
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The dyadics D_ ijk are functions of the distribution of inertia through the system and 
are formed from the barycentric vectors v_ ik.  The terms δij, δjk are Kronecker deltas. 
 

It can be shown that the angular momentum given by Equation (20) 
can be written in the form:  

 h_ cm = ∑
j=0

N
 ∑
i=0 

N
  D_ ij • ω_ j    (22) 

with D_ ij  derived from Equation (21) with the help of Equation (10) and given by: 
 

 D_ ij ≡ 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

 - M {( l_j
* • r_i

*) 1_ - l_j
* r_i

*}    i<j 

 I_i + ∑
k=0

N
mk {(v_ik • v_ik) 1_ - v_ik v_ik}   i=j 

 - M {( r_j
* • l_i

*) 1_ - r_j
* l_i

*}    i>j 

  (23) 

where 1_  is the unit dyadic [15].  The angular momentum of the system is constant in 
the absence of external torques.  We may assume that the initial angular momentum 
is zero (no initial spin); hence, h_ cm remains zero for all time. Equation (22) cannot 
be further integrated (with the exception of N=1) and must be carried along.  Equa-
tions (16), (17), (18) and (22) are sufficient to describe the motion of the end-effector 
in inertial space as a function of a free-floating system’s joint angular velocities,  one 
in which the position and attitude of the spacecraft is not controlled. 
 

The above vector formulation is independent of specific frames of reference.  
However, to construct the system Jacobian J*, Equations (16), (17), (18) and (22) 
must be expressed in matrix form.  For this purpose we assume all manipulator joints 
revolute; a reference frame with axes parallel to each body’s principal axes is at-
tached to each center of mass. The body inertia matrix expressed in this frame is 
diagonal. Bold lower case symbols represent column vectors, bold upper case matri-
ces.  Right superscripts must be interpreted as “with respect to,” left as “expressed in 
frame.”  A missing left superscript implies a column vector expressed in the inertial 
frame. 
 

The column vectors 
ivik expressed in frame i are transformed in the inertial 

frame as follows: 

 vik = Ti 
ivik  =  T0 0vik  (24a) 



SPACE ROBOTICS: DYNAMICS AND CONTROL 

 0vik = 0Ti 
ivik   (24b) 

where Ti is a transformation matrix that is given by: 

 Ti (e, n, q1,..., qi) = T0(e, n) 0Ti (q1,..., qi)   (25a) 

 0Ti (q1,..., qi) = 0A1(q1)...
i-1Ai(qi)  (25b) 

Note that i-1Ai(qi) transforms a column vector expressed in frame i to a column vec-
tor in frame i-1 and is a function of the relative joint angle of the two frames, qi.  The 
inertia matrices Dij can be expressed in the spacecraft frame according to the 
following equation: 

 0Dij = T0
T Dij T0 i, j = 1,...,N (26) 

The 3×3 transformation matrix T0 can be computed using the Euler parameters e and 
n [16]:  

 T0(e, n) = (n2 - eTe  ) 1 + 2 e eT + 2 n e× (27) 

 e (a, θ) = a sin(θ/2)  (28a) 

 n (a, θ) = cos(θ/2)  (28b) 

where a is the unit vector of the instant axis about which the spacecraft is rotated for 
an angle θ, the T superscript denotes transposition, and the × superscript denotes a 
skew-symmetric matrix that is formed from an e according to: 

 e× = 
⎣
⎢
⎡

⎦
⎥
⎤ 0   -ez   ey  

 ez   0   -ex  

-ey   ex   0  
   (29) 

1 is the 3×3 identity matrix. 
 

The scalar form of Equation (19) can now be written as: 

 ω j = ω0 + ω j
0   =  ω0 + T0 ∑

i=1

j
  0Ti 

iui q
.

 i  (30a) 

  = ω0 + T0 
0Fj q

.
   j = 1,...,N (30b) 

where 
iui is the unit column vector in frame i parallel to the revolute axis through 

joint i, and 0Fj is a 3×N matrix given by: 
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 0Fj ≡ [0T1
1u1, 0T2 

2u2,..., 0Tj 
juj, 0 ] j = 1,...,N (31) 

where 0 is a 3×(N-j) zero element matrix, and: 

 q = [ q1, q2 ,..., qj ,..., qN ] 
T  (32) 

Using Equations (25) through (32), Equations (16), (17) and (22) yield: 

 r.  E = T0 { 0J11 0ω0 + 0J12 q
.
  }  (33a) 

 ωE = T0 { 
0ω0 + 0J22 q

.
  }  (33b) 

 0 = 0D 
0ω0 + 0Dq q.     (33c) 

where: 

 0J11 ≡ -∑
i=0

N
  [0Ti 

iviN']× 
0J12 ≡ -∑

i=1

N
  [0Ti 

iviN']× 0Fi 
0J22 ≡ 0FN (34a) 

 0Dj ≡ ∑
i=0

N
  0Dij  (j = 0,...,N) 

0D ≡ ∑
j=0

N
  0Dj   

0Dq ≡ ∑
j=1

N
  0Dj 

0Fj (34b) 

The term 0Dij (i,j=0,...,N) represents inertia matrices, derived according to Equation 
(23); these are expressed in the spacecraft frame.  Equations (33a) and (34b) reflect 
the fact that the motion of the end-effector is the vector sum of two partial velocities.  
The first is due to the motion of the joints, the second to the resulting motion of the 
spacecraft caused by dynamic coupling.  Equation (33c) expresses the conservation 
of angular momentum.  0J11 is a skew-symmetric 3×3 matrix whose elements 
correspond to the vector from the system CM to the end-effector, expressed in the 
spacecraft frame.  0J12 is a 3×N matrix whose N columns are the components of 
vectors starting at the manipulator joints and ending at the end-effector.  Along with 
0J22, they correspond to the Jacobian of the end-effector Virtual Manipulator, with 
the first link fixed. (This is equivalent to a fixed attitude spacecraft).  0D is the 3×3 
inertia matrix of the whole system expressed in the spacecraft frame at the system 
CM , while 0Dq is a 3×N matrix and corresponds to the inertia of the system’s 
moving parts.  All the matrices in Equations (34a-b) depend on the system configu-
ration q, only. 

 
Equation (33c) can be used to eliminate the spacecraft angular velocity 0ω0 from 

Equations (33a-b), and hence to derive the free-floating system Jacobian J*, defined 
in Equation (1) as: 
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 J* (e,n,q) = diag(T0,T0) 
⎣
⎢
⎡

⎦
⎥
⎤ -0J11 0D-1 0Dq + 0J12 

 -0D-1 0Dq + 0J22 

  (35a) 

  = diag(T0,T0) 0J*(q)  (35b) 

 0J*(q) ≡ 
⎣
⎢
⎡

⎦
⎥
⎤ -0J11 0D-1 0Dq + 0J12 

 -0D-1 0Dq + 0J22 

   (35c) 

Both J* and 0J* are 6×N matrices.  Note that if N is equal to six, then J* is square 
and, if not singular, can be inverted.  Note also that diag(T0,T0) is always non-
singular, because T0 is always non-singular.  If N is less than six, it is not possible to 
follow any given end-effector trajectory while, if N is greater than six, the 
manipulator is redundant and a generalised inverse technique can be used.  We will 
assume in the rest of the paper that N is equal to six (no redundancy) unless it is 
otherwise noted.  If J* is going to be used for planning, T0 must be updated as the 
system moves.  The new e and n are computed according to Equation (36) given 
below, see [16]: 

 e.   = 1/2 [ e× + n 1 ] 0ω0  (36a) 

 n
.   = -1/2 eT 0ω0  (36b) 

 
III. Dynamic Singularities 
Now we have shown a systematic and efficient way of constructing the Jacobian J* 
that relates the motion of the end-effector as a function of the manipulator’s con-
trolled rates q.   in spite of the uncontrolled motions of the spacecraft, and revealed 
the Jacobian’s explicit structure.  We will address the important question of when the 
Jacobian becomes singular.  This is important for control and physical reasons, since 
nearly all planning algorithms as well as all resolved rate or acceleration control 
algorithms need to invert J*, given by Equation (35).  Also the system Jacobian, for a 
manipulator position, must be invertible or of full rank in order physically to move 
the manipulator end-effector in all directions at that point in space.   

 
Singularities occur for fixed-base non-redundant manipulators when end-

effector velocity due to the motion of one joint is parallel to the velocity due to the 
motion of some other joint.  At such points, at least one degree of freedom is lost and 
the rank of the manipulator Jacobian J is reduced, accordingly becoming singular.  
Singular points for fixed-base manipulators occur at workspace boundaries or when 
there is alignment of joint axes.  Given the kinematic structure of a manipulator, we 
can find all its singular configurations by solving the equation det[J (q)]=0.  The 
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literature usually describes singular points in terms of fixed-base manipulator 
workspace positions instead of singular configurations or of singularities in the joint 
space because at any singular set of joint angles qs, there corresponds a singular 
point in the six DOF workspace.  The obvious benefit is that the manipulator path 
planner or controller can be designed to avoid these workspace points.  Singularities 
of fixed-base manipulators are kinematic, because it is sufficient to analyze the 
kinematic structure of the manipulator in order to identify them. 

 
The singularities of J* for a free-floating space system are obtained by 

examining Equation (35).  First, it can be seen that the term diag(T0,T0) is always 
square and invertible.  Thus, any singular points of J* are due to singular points of 
0J*(q) which can be found from the condition: 

 det[0J*(q)] = 0 (37) 

 Equation (37) proves that all singularities are functions of the manipulator con-
figuration with respect to its spacecraft, namely to the joint angles q, not to the 
spacecraft attitude.  These singularities correspond to singular points in the 
manipulator’s joint space.  From Equations (3), (11), (24) and (25), the position of 
the manipulator workspace follows as a function of both the joint angles q and the 
spacecraft attitude e,n: 

 rE = ρN + rN = T0(e,n)  ∑
i=0

N
  0Ti (q1,..., qi) 

iviN
' (38) 

In general, due to the system’s redundant nature, each point in the manipulator 
workspace can be reached with infinite system configurations q and spacecraft 
attitudes (e,n).  Singular points in joint space cannot be mapped into unique points in 
the workspace.  Furthermore, given an initial position of this system and both the 
final inertial position and orientation of its end-effector, both the final manipulator 
configuration and the spacecraft attitude is a function of the selected path to reach 
that end-effector position and orientation.  This property is due to the non-
integrability of the angular momentum equation as given by Equation (33c).  
Therefore, an end-effector position in the workspace can be singular or not 
depending on whether it reaches this point in a singular configuration.  Thus the free-
floating manipulator singularities in the workspace are path dependent. 

 
In addition, 0J*(q) in Equation (35c) depends on both the kinematic and mass 

properties expressed by the submatrices 0J12 and 0J22, and on the inertia distribution 
of the manipulator and the spacecraft, see Equations (23) and (34).  As noted earlier, 
all 0Dij matrices are functions of the system configuration and, hence, this 
distribution is configuration dependent.  As a result, any singular configurations 
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cannot be predicted by examining the kinematic structure of the manipulator alone.  
Since the singularities of J* depend on the system’s dynamic parameters, its mass 
and inertia properties, we call them dynamic singularities. 

 
The dynamic singularities of a free-floating manipulator space manipulator 

system can be explained physically by noting that the end-effector velocity x.  , given 
by Equation (1), can be decomposed in two parts.  The first part is due to the motion 
of the manipulator joints, the second is due to spacecraft motion.  This second 
motion occurs because of the dynamic coupling of the spacecraft and the 
manipulator and is a function of the system masses and inertias.  The matrix J* 
becomes singular when the end-effector velocity x . , produced by the combined joint-
spacecraft motion caused by the motion of a manipulator joint, is parallel to another 
x .  produced by the by the same means by some other joint and the spacecraft.  If the 
mass and inertia of the vehicle becomes very large, approximating a fixed-base 
manipulator, then all the dynamic terms in Equation (35) vanish and J* reduces to 
the fixed-base manipulator Jacobian, while the dynamic singularities reduce to the 
ordinary kinematic singularities. 

 
The conclusion of this analysis is that if the spacecraft of a space manipulator 

system is not actively controlled but is free-floating, then dynamic singularities can 
occur.  All resolved rate or resolved acceleration control schemes will fail because at 
these points, Equation (35) has no inverse.  Control schemes that compute the 
desired joint torques by using a transposed Jacobian will fail to keep the desired end-
effector velocity because dynamic singularities represent an inherent physical 
limitation.  The manipulator will move with a velocity that is the projection of the 
desired velocity on the allowed direction: the result may be large end-effector errors. 
 
IV. A Planar Example 
Consider the simple planar free-floating space manipulator system shown in Figure 
3.  The system parameters are given in Table I.  As shown in the Appendix, the 
system Jacobian is: 

 J*(θ,q) = 
⎣
⎢
⎡

⎦
⎥
⎤

 
cos(θ) -sin(θ)

sin(θ) cos(θ)
 0J*(q)(39a)  

where: 

 0J*(q) = 
1
D  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤-(βs1+γs12)D0  βs1D2-γs12(D0+D1)

-α(D1+D2)+(βc1+γc12)D0  -(α+βc1)D2+γc12(D0+D1)
  (39b) 
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where θ, q1 and q2, are defined in Figure 3, s1 = sin(q1), c12 = cos(q1+q2) etc.  The 
inertia scalar sums D, D0, D1 and D2 are defined in the Appendix, see Equation 
(A13), and α ≡ 0r0

*  = 0.426 m, β ≡ 1r1
*  = 0.894 m, and γ ≡ 2c2

*  + r2 = 0.968 m.  Since 
each Di (i=0,1,2) and D are functions of q, the Jacobian elements are more 
complicated functions of the q than their fixed-base counterparts.  This Jacobian 
should be compared to the fixed-base manipulator Jacobian J which is given by: 

 J(q) = 
⎣⎢
⎢⎡

⎦⎥
⎥⎤

 -(l1+r1)s1-(l2+r2)s12    -(l2+r2)s12 

(l1+r1)c1+(l2+r2)c12   (l2+r2)c12 

  (40) 

The same structure between J* or 0J*(q) and J(q) can be seen. 
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Figure 3.  A planar free-floating manipulator system shown in a dynamically 
singular configuration. 

 
 

Table I.  The system parameters. 
Body li (m) ri (m) mi (Kg) Ii   (Kg m2) 

0 .5 .5 40 6.667 
1 .5 .5 4 0.333 
2 .5 .5 3 0.250 

 
In order to invert J* given by Equation (38), the 2×2 matrix, 0J*(q), must be 

inverted.  First its determinant becomes zero when: 
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 αβD2(q1,q2)sin(q1)+βγD0(q1,q2)sin(q2)-αγD1(q1,q2)sin(q1+q2) = 0 (41) 

The values of q1 and q2 which satisfy Equation (41) and result in dynamically 
singular configurations can be plotted in joint space as shown in Figure 4.  This 
Figure also shows that conventional kinematic singularities like q1=kπ, q2=kπ, 
k=0,±1,... still satisfy Equation (41).  However, infinitely more dynamically singular 
configurations exist which cannot be predicted from the kinematic structure of the 
manipulator. 
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Figure 4.  Dynamically singular configurations (q1, q2) for the two link 

manipulator in joint space. 
 
Figure 3 shows the manipulator in the singular configuration at q1=-65°, q2=-

11.41°:  spacecraft attitude at θ=40°. This figure also shows the only available 
direction for the end-effector motion.  The inertial motion of the end-effector in this 
configuration will be the shown, no matter how the joint actuators are driven.  The 
best a control algorithm can do is to follow the available direction.  All algorithms 
that use a Jacobian inverse, such as the resolved rate or resolved acceleration control 
algorithms, fail at such a point.  Ones that use a pseudoinverse Jacobian or a 
Jacobian transpose will likely follow the available direction, but may result in large 
unrecoverable errors. 

 
To demonstrate this problem, the manipulator end-point is commanded to reach 

the workspace point (1.5,1.5) starting from the initial location of (2,0) with initial 
attitude θ equal to 21° using a simple Transposed Jacobian Control algorithm, 



DYNAMIC SINGULARITIES IN FR./FL. SPACE 
MANIPULATORS 

augmented by a velocity feedback term for increased stability margins [17].  This 
control algorithm assumes that the end-effector inertial position and velocity, x and 
x.  , can be calculated or measured directly.  Assuming x and x.   are measured, the 
control law is: 

 τ  = J*T { Kp (xdes - x) - Kd x.   }  (42) 

where xdes is the inertial desired point location.  The matrices Kp and Kd are 
diagonal.  Note that this algorithm specifies the desired end-effector location; the 
path of the end-effector to this desired location is not specified in advance.  If the 
control gains are large enough, then the motion of the end-point will be a straight 
line.  The torque vector τ  is non-zero until the (xdes - x) and x.   are zero or until the 
vector in the brackets in Equation (42) is in the null space of J*T. 
 

Figure 5 shows the motion of the end-effector from the initial location at point A 
(2,0), towards the final location at point D (1.5,1.5).  The control gain matrices are 
Kp = diag(5,5) and Kd = diag(15,15).  Initially the end-effector path is initially 
almost a straight line.  However, once the manipulator assumes a dynamically 
singular configuration at point B in Figure 5, the end-effector cannot move towards 
its desired position; rather it moves along the available direction converging finally 
to point C, for which (xdes - x) is in the null space of J*T.  Any further motion beyond 
C is impossible.  Figure 6 shows the time history of the spacecraft attitude and 
manipulator joint angles.  The system reaches a dynamically singular configuration 
in about 5 seconds and thereafter oscillates about singular configurations until it 
finally converges to point C.  Note again that an algorithm using a Jacobian inverse 
would fail at a location like point B. 

 
Finally, it is interesting to note that when both m0 and I0 approach infinity, J* 

approaches J, the Jacobian derived for the same manipulator on a fixed-base, without 
any change in matrix size.  To show this note that if the spacecraft is massive, 
β→l1+r1, γ→l2+r2, approaching the manipulator link lengths, m0/M→1, m1/M→0, 
m2/M→0, D0/D→1, D1/D→0 and D2/D→0. T0 becomes a constant transformation 
from the manipulator base frame to the inertial frame, usually the unit matrix. 
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Figure 5. Dynamic Singularities result in large tracking errors. 
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Figure 6.  The spacecraft attitude θ  and the manipulator joint angles q1 and q2 

as a function of time 
 

V. Space Manipulator Workspaces 
Space manipulators have more complex workspace characteristics than fixed-base 
manipulators, as shown by using the concept of the Virtual Manipulator.  Vafa 
describes a constrained workspace, one where all points can be reached if the 
attitude of the spacecraft is controlled, but not its position [5].  This workspace is a 
sphere with its center at the system’s CM.  However, it can be shown that if the 
attitude is not controlled, as for a free-floating system, then points in this space can 
still always be reached by a suitable path selection [15].  For this reason we prefer to 
call this workspace the reachable workspace. What follows below shows that the 
nature of this workspace is related to a system’s dynamic singularities. 

 
We have proven already that a system’s dynamic singularities are a unique 

function of the configuration and that their occurrence at a particular inertial 
workspace location is path dependent.  Here we are interested in finding regions in 
the reachable workspace in which dynamic singularities will never occur. 

 
 Recall that dynamically singular configurations can be found from Equation 

(37).  Its solution represents a family of hypersurfaces Qs,i (i=1,2,...) in the 
manipulator joint space.  These hypersurfaces are collections of points qs that result 
in dynamically singular configurations.  Further note that the transformation matrix 
T0 does not change the length of a vector; hence, the distance R of the end-effector 
location from the system CM can be written using Equation (38)  as a function of the 
system’s configuration q only: 
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 R = R(q) = || ∑
i=0

N
  0Ti (q1,..., qi) 

iviN
' ||  (43) 

The symbol ||•|| denotes a vector’s length.  Equation (43) also defines a spherical 
shell in inertial space with its center at the CM and with a radius R.  Hence, each 
singular configuration qs is mapped according to Equation (43) to a spherical shell in 
inertial space.  By the same token, each hypersurface Qs,i is mapped according to 
Equation (43) to a volume contained within the spherical shells with radii: 

 Rmin,i =  min 
q� Qs i

  R(q) (i=1,2,...) (44a) 

 Rmax,i =  max 
q� Qs i

  R(q) (i=1,2,...) (44b) 

All workspace points that belong in this volume can be singular if they are reached in 
singular configurations qs.  As shown earlier, this may happen or not depending on 
the path taken by the manipulator’s end-effector.  If there is more than one singular 
hypersurfaces, then there are more such volumes containing points that can lead to 
singular configurations. We call the union of all these volumes a Path Dependent 
Workspace (PDW).  The Path Dependent Workspace contains all reachable 
workspace locations that may be reached in singular configurations, depending upon 
the path taken by the end-effector.  It follows that locations in the PDW can be 
reached with some paths but not with others; this justifies their name.  In order to 
reach points belonging to the PDW, carefully selected paths must be employed. 

 
Subtracting the PDW from the reachable workspace results in the Path 

Independent Workspace (PIW).  Due to its construction, this workspace region 
contains all reachable workspace locations that will never lead to dynamically 
singular configurations.  It follows that all points in the Path Independent Workspace 
can be reached by any path, assuming that this path lies entirely in the PIW.  It can 
be shown that the PIW is a subset of the free workspace defined by Vafa [15,5].  
PIW or PDW spaces may reduce to zero depending on the case.  A clear goal for the 
designer is to reduce the PDW and increase the PIW. 

 
The construction of the PIW and PDW workspaces is demonstrated using the 

system illustrated in Figure 3.  The distance R of the end-effector from the system 
CM given by Equation (43) is written as: 

R = R(q) =  α2 + β2 + γ2 + 2αβcos(q1) + 2αγcos(q1+q2) + 2βγcos(q2)  (45) 
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For this example, there are two hypersurfaces Qs which are lines in the joint space 
(see Figure 4), and are found according to Equation (41). Each of these lines 
corresponds to pairs of q1 and q2, which are substituted in Equation (45).  Then, the 
conditions in Equations (44a-b) result in two Path Dependent Workspaces, 
constrained by (Rmin,1, Rmax,1) and (Rmin,2, Rmax,2) respectively: 

 Rmin,1 = 0.352 m = α+β−γ  (46a) 

 Rmax,1 = 0.500 m = α+γ−β  (46b) 

 Rmin,2 = 1.436 m = β+γ−α  (47a) 

 Rmax,2 = 2.288 m = α+β+γ  (47b) 

The PIW is then found by subtracting the two PDW regions defined above from the 
reachable workspace, see Figure 7.  In general, the PIW is smaller than the free 
workspace defined in Reference [5], although in this case it is equal to it.  When the 
end-effector path has points belonging to the PDW, such as path A in Figure 7, the 
manipulator may assume a dynamically singular configuration because points in the 
PDW region can be dynamically singular, depending on the path.  On the other hand, 
paths totally within the PIW region, such as path B, can never lead to dynamically 
singular configurations. 

-3 -2 -1 0 1 2 3

3

2

1

0

-1

-2

-3

Reachable Workspace 
Boundaries

System Center
of Mass

Path Dependent 
Workspace (PDW)

Path Independent 
Workspace (PIW)

R
max,1

A

B

Rmin,2

x (meters)

y
 (

m
et

er
s)

 

Figure 7.  The Reachable, the Path Dependent, and Path Independent 
Workspaces. 
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VI. Reducing the Effect of Dynamic Singularities 
Maximizing the PIW clearly reduces the impact of dynamic singularities on a 
system’s effectiveness.  This can be achieved by recalling that dynamic singularities 
occur because the spacecraft is free to rotate as a result of manipulator motions, see 
Equation (33).  If the spacecraft attitude is kept constant, ω0 is zero, and the only 
singular points are due to the kinematic singularities; the PIW is maximum [15].  
However, this method requires the active control of the spacecraft attitude which can 
increase system complexity and cost and reduce the system’s useful life. 

 
The PIW can also be maximized using manipulator redundancy.  If the 

manipulator is at a singular configuration, the redundant degrees of freedom may be 
used to achieve the necessary end-effector velocity.  This is an area which requires 
additional research. 

 
If the spacecraft is made to be massive compared to the manipulator, I0 and D0 

become large.  For example, it can be seen from Equation (41) that if I0 approaches 
infinity, the only singular configurations are the kinematic ones ( q2 = ±0°, ±180°).  
This means that if the inertia of the spacecraft is infinite, then no dynamic sin-
gularities occur and the PIW is equal to the maximum workspace.  Although it is 
desirable in most cases to make the spacecraft as light as possible for a number of 
reasons, such as launch weight, a system’s designer has the freedom to increase the 
system’s inertia keeping its mass constant.  Such a design would result in an increase 
in the system’s PIW. 

 
Finally, for the case where the manipulator acts in a plane, it can be shown that 

if the manipulator is mounted at the spacecraft’s center of mass, the PIW is equal to 
the reachable workspace and the PDW is eliminated [14,15].  For the example 
discussed in Section IV, if 0r0

*  or α are zero, the only singular configuration that 
exists is at q2 equal to kπ (k=0,±1,...), see Equation (41).  This is a kinematic 
singularity and corresponds to the reachable workspace boundaries.  If 0r0

*  or α 
approach zero, then the two circles that define the PIW, shown in Figure 7, approach 
the reachable workspace boundaries, see Equations (46); hence the dynamic 
singularities become less important.  In some cases it may be possible to use com-
binations of the various techniques discussed.  For example, a system may be 
designed to have a large moment of inertia about one axis while the manipulator arm 
is mounted near the spacecraft CM in the other two dimensions. 
 
V. Conclusions 
A general formulation describing the motion of a space manipulator system is 
presented.  The system Jacobian is derived for a free-floating system where 
spacecraft position and attitude are not controlled. This Jacobian can be singular in 
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configurations that are distinct from the usual kinematically singular configurations: 
a free-floating manipulator system exhibits singularities due to the dynamic coupling 
between link motions and the spacecraft.  These singularities are called dynamic 
singularities and can be a serious problem for all planning and control algorithms 
that do not assume active control of spacecraft attitude.  Consequently, their effects 
must be considered in the design of such systems. 
 

  Additionally, a workspace point may be singular or not depending on the end-
effector path used to reach this point.  Thus a manipulator’s reachable workspace is 
divided in two regions. In the first, called a Path Independent Workspace (PIW), no 
dynamic singularities can occur; in the second, called a Path Dependent Workspace 
(PDW), dynamic singularities may occur depending on the path taken by the end-
effector in the inertial space.  Some notions are presented that may help in maxi-
mizing the PIW.   
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Appendix A 

The planar two link system shown in Figure 3 assumes the two coordinates of the 
end-effector, x and y, are controlled by the two manipulator joint angles, q1 and q2.  
End-effector orientation is not controlled for this two DOF system (N=2), hence 
Equation (1) for this system is simply: 

 x.   = r.  E = 
d
dt  [x, y]T = J* q.     (A1) 

with: 
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 x = rE = [x, y]T (A2) 

 q = [q1, q2]T (A3) 

while J* given by Equation (35), becomes: 

 J*(θ,q) = T0(θ) 0J* (q)  = T0 [-
0J11 0D-1  0Dq + 0J12 ] (A4) 

where θ denotes the spacecraft attitude, as shown in Figure 3. For this example, the 
transformation matrix from the spacecraft frame to the inertial frame, T0, is given by: 

 T0(θ) = Rot(θ) = 
⎣
⎢
⎡

⎦
⎥
⎤cos(θ) -sin(θ)

sin(θ) cos(θ)
   (A5) 

Only the planar sub-part of the transformation matrices is used for simplicity.  The 
transformation matrices 0Ti are found according to Equation (25): 

 
0T1 = Rot(q1) 

 0T2 = Rot(q1) Rot(q2) (A6) 

The following demonstrates the construction of the system inertia matrix.  The 
matrices in Equation (A4) are assembled by first expressing all vik in Equation (12) 
in the frame of the ith body, according to Equations (7)-(9).  For the sake of 
simplicity we assume that all ri and li are parallel to the x axis of the ith frame.  
Hence, only the x-component of the barycentric vectors ivik is non-zero and given by: 

 0r0
*  =  

1
M  r0m0 

 
0c0

*  = - 
1
M  r0(m1+m2) 

 0l0
*  = - 

1
M  r0(m1+m2) - l0 

 1r1
*  =  

1
M  {r1(m0+m1)+l1m0} 

 
1c1

*  =  
1
M (l1m0-r1m2)  

 1l1
*  = - 

1
M  {l1(m1+m2)+r1m2} 

 
2r2

*  =  
1
M  l2(m0+m1) + r2 
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 2c2
*  =  

1
M  l2(m0+m1) 

 2l2
*  = - 

1
M  l2m2 (A7) 

where the total mass of the system, M, is given by: 

 M = m0 + m1
 + m2 (A8) 

For the planar case, the inertia matrices 0Dij corresponding to Equation (3) reduce to 
the scalars 0dij and are given by: 

 0d00 = I0 + 
m0(m1+m2)

M   r0
2 

 0d10 = 
m0r0
M   {l1(m1+m2) + r1m2}cos(q1) = 0d01 

 0d20 = 
m0m2

M   r0l2cos(q1+q2) = 0d02 

 0d11 = I1 + 
m0m1

M   l1
2 + 

m1m2
M   r1

2 + 
m0m2

M  (l1+r1) 2 

 0d21 = { 
m1m2

M   r1l2 + 
m0m2

M   l2(l1+r1)}cos(q2) = 0d12 

 0d22 = I2 + 
m2(m0+m1)

M   l2
2  (A9) 

Both iui (i=1,2) vectors in Equation (17) are equal to [0 0 1]T; the 0Fi matrices reduce 
to: 
 

0F1 = [1   0]  

 0F2 = [1   1] (A10) 

For simplicity, set: 

 α ≡ 0r0
*  β ≡ 1r1

*  γ ≡ 2c2
*  + r2 (A11) 

Then the matrices in Equation (34) are given by: 

 0J11 = 
⎣⎢
⎢⎡

⎦⎥
⎥⎤

 -βs1-γs12 

 α+βc1+γc12 
 , 0J12 = 

⎣⎢
⎢⎡

⎦⎥
⎥⎤ -βs1-γs12    -γs12 

 βc1+γc12  γc12 

 , 0J22 = 0F2 (A12) 
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0Dj ≡ Dj = ∑
i=0

2
  0dij   (j=0,1,2),  0D ≡ D = D0 + D1 + D2,  0Dq = [ D1+D2    D2] (A13) 

where s1 ≡ sin(q1), c12 ≡ cos(q1+q2) etc.  Finally, the system Jacobian J* is assembled 
from Equations (A4) and (A7)-(A13) and given as Equation (38). 


