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Abstract 

The kinematics and dynamics of free-floating manipulators are examined 
from a fundamental point of view.  The dynamic coupling between an 
uncontrolled spacecraft and its manipulator can make a system 
dynamically singular at configurations which cannot be predicted by the 
system’s kinematic properties.  Nonholonomic behavior is observed in 
free-floating systems, and is due to the nonintegrability of the angular 
momentum.  A workspace point can be singular or not, depending on the 
path taken to reach it.  Trouble-free Path Independent Workspaces are 
defined.  Nonholonomy in space manipulators is utilized by planning 
techniques that permit the control of a spacecraft’s attitude by means of 
joint manipulator motions, the simultaneous control of the joint angles of 
a manipulator and of the attitude of its spacecraft, using joint motions 
only, and finally, the effective use of a system’s reachable workspace by 
planning paths that avoid dynamically singular configurations. 

 
 
I. Introduction 
Space robotic devices are envisioned to assist in the construction, repair and 
maintenance of future space stations and satellites.  To increase the mobility of such 
devices, free-flying systems in which one or more manipulators are mounted on a 
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thruster-equipped  spacecraft, have been proposed  [1-6].    In such a system, 
dynamic 
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coupling between the manipulator and its spacecraft exists, and manipulator motions 
induce disturbances to the system’s spacecraft.  Thruster jets can compensate for 
these disturbances, but their extensive use limits severely a system’s useful life span 
[2-4].  To increase a system’s life, operation in a free-floating mode has been 
considered [3-6].  In this mode of operation, spacecraft thrusters are turned off, and 
the spacecraft is permitted to translate and rotate in response to its manipulator 
motions.  In practice, this mode of operation can be feasible if the total system 
momentum is zero; if nonzero momentum develops, the system’s thrusters must be 
used to eliminate it. 

Free-floating systems exhibit nonholonomic behavior, which is due to the 
nonintegrability of the angular momentum [8,11].  This property complicates the 
planning and control of such systems.  Joint space planning techniques that take 
advantage of the nonholonomy in such systems were proposed [2,7,8].  A Self 
Correcting Planning technique allows the control of a spacecraft’s attitude using the 
manipulator’s joint motions [2].  Lyapunov techniques were explored to achieve 
simultaneous control of a spacecraft’s attitude and its manipulator’s joint angles, 
using the manipulator’s actuators only.  Convergence problems were reported in 
some cases [7,8].  Various control algorithms were designed for the motion control 
of free-floating systems, and some of them were experimentally verified [4,5].  
However, control algorithm instabilities were observed, [6], which were shown to be 
due to the existence of dynamic singularities [9,11]. 

In this paper, the fundamental kinematic and dynamic nature of free-floating 
manipulators is analyzed, and the nonintegrability of the angular momentum is 
discussed.  Based on this analysis, the controllability of a free-floating system is 
examined in the joint and Cartesian space.  It is shown that a free-floating 
manipulator is controllable in its joint space, but can be locally uncontrollable in the 
Cartesian workspace.  This is due to the existence of dynamic singularities.  Unlike 
to fixed-based systems, dynamically singular configurations cannot be predicted by 
the kinematic structure of the system, and instead depend upon its mass properties.  
It is shown that dynamic singularities are path dependent and a particular workspace 
point can induce a dynamic singularity or not, depending upon the path taken to 
reach it.  Path Independent Workspaces are defined as the regions in which no 
dynamic singularities occur.  It is shown that the nonintegrability of the angular 
momentum introduces nonholonomic behavior in free-floating systems.  Joint space 
path planning techniques that take into advantage the nonholonomic behavior of 
free-floating systems, like the Self Correcting Planning technique, and Lyapunov-
based techniques, are reviewed.  Potential problems in using these techniques are 
identified.  Finally, a Cartesian space path-planning technique is presented.  This 
technique avoids dynamically singular configurations, and hence permits the 
effective use of the full reachable workspace of a free-floating system. 
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II. Kinematic and Dynamic Modeling of Free-floating 
Manipulators 

A. Kinematic Modelling 
This section develops the kinematic and dynamic equations needed to model a rigid 
free-floating manipulator system, see Figure 1.  A key feature of this modeling is 
expressing the key kinematic and dynamic variables of the system as functions of a 
set of constant length, body-fixed barycentric vectors.  The dynamics are written 
using a Lagrangian approach. 

The body 0 in Figure 1 represents the spacecraft; the bodies k (k=1,...,N) 
represent the N manipulator links.    N+1 reference frames are introduced, each one 
attached to the Center of Mass (CM) of each body, with axes parallel to the body’s 
principal axes.  Hence, the body inertia matrix expressed in this frame is diagonal.  
The manipulator joint angles and velocities are represented by the N×1 column 
vectors q and q

.
 .  The spacecraft can translate and rotate in response to manipulator 

movements.  The manipulator is assumed to have revolute joints and an open chain 
kinematic configuration so that, in a system with an N degree-of-freedom (DOF) ma-
nipulator, there will be 6+N DOF. 
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Figure 1.  A spatial free-floating manipulator system. 

 
First, the end-effector position, rE, is written with respect to the inertially fixed 

origin O.  It can be shown that rE is given by [10,11]: 

 rE = rcm + ∑
i=0

N
  viN + rN  =  rcm + ∑

i=0

N
  viN,E  (1) 
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where rcm is the position vector of the system’s CM with respect to the origin O, 
vectors viN are barycentric vectors fixed on body i, and given in Appendix A by 
Equation (A1), rN is the vector from the CM of the last link to the end-effector, and 
viN,E = viN + δiN rN, where δiN is the Kronecker’s delta, [12,13,11].  Assuming that 
no external forces act on the system, the system CM does not accelerate, and the 
system linear momentum p = Mr

.
 cm is constant.  With the further assumption of zero 

initial linear momentum, rcm is also a constant, and can be taken to be zero without 
loss of generality.  

The orientation of link i is described by the transformation matrix Ti, given by: 

 Ti (θ , q1,..., qi) = T0(θ) 0Ti (q1,..., qi)   (2) 

where θ  represents the orientation of the spacecraft, T0 is a 3×3 transformation 
matrix that describes the orientation of the spacecraft frame with respect to the 
inertial frame, and 0Ti is a 3×3 transformation matrix, function of the joint angles 
(q1,…, qi), that describes the orientation of the ith frame with respect to the spacecraft 
frame.  The orientation of the Nth link, is the orientation of the end-effector. 

The end-effector inertial linear velocity, ṙ E, is obtained by differentiation of 
Equation (1).  Since the barycentric vectors are body-fixed, ṙ E is given simply by: 

 ṙ E = ṙ cm + ∑
i=0

N
   ω i 

× viN,E  =  ∑
i=0

N
   ω i 

× viN,E  (3) 

where ω i is the inertial angular velocity of body i, ṙ cm is the velocity of the system’s 
CM taken equal to zero, and the × converts a vector to the cross-product skew-
symmetric matrix, see Equation (A4).  The inertial angular velocity ωk is written as a 
function of the spacecraft’s angular velocity expressed in the 0th frame, 0ω0, and the 
manipulator joint rates, q̇ : 

 ωk = T0 (
0ω0 + 

0Fk q̇ ) k = 1,…,N (4) 

where 0Fk is a 3×N matrix given by: 
 0Fk ≡ [0T1

1u1, 0T2 
2u2,…, 0Tk 

kuk, 0 ] k = 1,…,N (5) 

The vector iui is the unit column vector in frame i parallel to the revolute axis 
through joint i, and 0 is a 3×(N-k) zero element matrix.  The end-effector angular 
velocity is simply given by: 
 ωE = ωN  (6) 
It can be shown that in the absence of external torques, and for zero initial ṙ cm, the 
constant angular momentum of the system is given by the sum [9,11]: 

 h = ∑
j=0

N
 ∑
i=0 

N
  Dij ω j    (7) 
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where Dij are mixed inertia matrices, functions of the barycentric vectors, and given 
by Equation (A5).  Assuming zero initial angular momentum, Equation (7) can be 
solved for 0ω0 to yield: 

 0ω0 = - 0D-1  0Dq q
.

   (8) 

where 0D is the 3×3 inertia matrix of the system expressed in the spacecraft frame at 
the system CM, and 0Dq is a 3×N matrix that corresponds to the inertia of the 
system’s moving parts, see Equations (A7).  Note that the inverse of 0D always exists 
because the system inertia matrix is positive definite. 

Equation (8) can be used to eliminate the spacecraft angular velocity 0ω0 from 
Equations (3) and (6), and hence to derive a free-floating system’s Jacobian J*, 
defined by: 

 [ r
.
 E , ωE ]T = J* q

.
    (9) 

and given as: 

 J* (Θ ,q) = diag(T0,T0) 
0J*(q)  (10) 

 0J*(q) ≡ 
⎣
⎢
⎡

⎦
⎥
⎤ -0J11 0D-1 0Dq + 0J12 

 -0D-1 0Dq + 0J22 

   (11) 

where the matrices 0J11, 0J12, and 0J22, are defined in Appendix A.   
Note that these Jacobians are basic Jacobians, that is Jacobians independent of 

the particular parameter set used to describe the end-effector orientation [14].  
Kinematic equations related to the particular orientation representation also must be 
used.  Equation (9) describes the effect of joint motions on end-effector velocities, 
and its form is the same to the form that of that for fixed-based systems.  Comparing 
the structure of 0J* to the structure of the Jacobian J, that would be written for the 
same manipulator but with a fixed base, it is easy to see that these are the same.  
Indeed, both depend on the configuration q, and have the same size, 6×Ν.  The same 
observations hold for J*, with the exception that in addition, this is also a function of 
the spacecraft orientation.  However, this orientation can be estimated or measured, 
and hence, J* can be used in the place of J in well-established control or planning 
algorithms derived for fixed-based systems. 

Note that J* depends not only on the kinematic properties of the system, but also 
on configuration dependent mass properties, eg. inertias.  This observation suggests 
that singular configurations for a free-floating system, i.e. ones in which 0J* has rank 
less than six, will not be the same to the ones for fixed based systems.  This is indeed 
the case, as we will see later. 

 
B.  Dynamic Modelling 
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To derive the equations of motion of a free-floating system, the system kinetic 
energy is expressed as a function of the generalized coordinates and their velocities, 
[10,11]. 

 T = 
1
2 ∑

j=0

N
 ∑
i=0 

N
   ω i

T Dij ω j  (12) 

It can be shown that under the same assumptions as above, T is given by [10,11]: 

 T = 
1
2 q

.
 T H*(q) q

.
   (13) 

where H*(q) is the reduced system inertia matrix, given by: 

 H*(q) ≡  
0Dqq -  0Dq

T   0D-1 0Dq  (14) 

The matrices 0D, 0Dq, and 0Dqq are defined by Equations (A7).  It is easy to show 
that the system inertia matrix, H*, is an N×N positive definite symmetric inertia 
matrix, which depends on q and the system mass and inertia properties.  All elements 
of H* are functions of the manipulator joint angles qi (i=1,...,N) only, since 0D, 0Dq, 
and 0Dqq are functions of only the qi’s and not of the spacecraft attitude; hence the 
system inertia matrix H* has the same structural properties as the inertia matrices 
that correspond to fixed-base manipulators. 

In the absence of gravity, the potential energy of a rigid system is zero, and the 
system’s dynamic equations are given by: 

 
d
dt  {

∂T
∂q̇ } -  ∂T∂q  = τ   (15) 

where τ is the generalized force vector which, in this case, is equal to the torque 
vector [ τ1, τ2, ..., τN ]T.  Applying Equation (15) to the kinetic energy given by Equa-
tion (13) results in a set of N equations of motion of the form: 

 H*(q) q
..

   +  C*(q, q
.
 ) q

.
  = τ   (16) 

where H*(q), is the system inertia matrix defined by Equation (14) and C*(q, q
.
 ) q

.
  

contains nonlinear centrifugal and Coriolis terms.  Note that the equations of motion 
are written as functions of the joint variables only,  and not of the spacecraft 
variables.  This results from the fact that the system kinetic energy does not depend 
on a spacecraft’s attitude nor on its angular or linear velocity, when the system initial 
angular momentum is zero, and the system is free of external torques.  The 
spacecraft’s contribution to the system’s kinetic energy, T, enters in through the 
inertia matrices 0D and 0Dq, which depend on its mass m0 and inertia I0. 

If it is assumed that a particular task requires motion control of the end-effector, 
then Equations (9) and (16) can be used to design a controller.  Based on the 
structural similarity of these equations to the ones derived for a fixed based system, 
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Reference [10] suggested that if singularities of J* can be avoided, nearly any control 
algorithm applied to fixed-based systems can be used in free-floating systems.  The 
nature of free-floating system singularities and workspaces, in conjunction to the 
nonintegrability of the angular momentum, is addressed next. 
III.  Controllability, Dynamic Singularities and Workspaces 
A.   Controllability in the Joint Space 
Assume that one task requires control of the system configuration q, only.  Then, a 
linearizing feedforward control law of the form τ  = H*(q) u + C*(q, q

.
 ) q

.
 , where 

u∈RN is an auxiliary control input, reduces the equations of motion to a controllable 
decoupled second order system.  This can be done because H* is a positive definite 
matrix, and proves that the system is controllable in its joint space. 
 
B.   Nonintegrability of the Angular Momentum 
The angular momentum, given by Equation (8), cannot be integrated to yield the 
spacecraft’s orientation as a function of the system’s configuration, q, with the 
exception of a planar two body system [11].  Obviously,  this equation can be 
integrated numerically, but in such a case the resulting final spacecraft orientation 
will be a function of the path taken in the joint space.  In other words, different paths 
in the joint space, with the same initial and final points, will result in different 
spacecraft orientations.  Due to Equation (9), the same applies to workspace paths; 
i.e. moving from one workspace location to another one via different paths results in 
different final spacecraft orientations.  Closed paths in the joint space or the 
workspace can change the system’s attitude. 

It is this nonintegrability property that introduces nonholonomic characteristics 
to free-floating systems.  However, this nonholonomic behavior results from the 
particular dynamic structure of the system, and is not due to kinematic nonintegrable 
constraints, like the ones experienced by a rolling disk.  The use of this 
nonholonomic behavior to achieve various tasks is described in the following 
sections. 
 
C.   Controllability in the Cartesian Space 
Assume next that the task is to move the end-effector to some position and 
orientation, and that N = 6.  Since the system is controllable in its joint space, any q, 
q
.
  can be obtained.  The question that arises next is wether this is enough to obtain 

any r
.
 E, ωE, and eventually any position and orientation.  The answer to this question 

is affirmative if the Jacobian J* is of full rank, i.e. six.  Similar observations hold for 
the more general case of an N DOF manipulator.  Since the transformation matrix T0 
is not singular, (with the exception of possible representation singularities), then J* 
looses its full rank when: 

 det[0J*(q)] = 0  (17) 
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The above condition shows that singularities in free-floating systems are fixed in 
joint space.  However, since 0J* is a function of configuration dependent inertia 
matrices, these singularities are different than the ones for fixed base systems, and 
their location in joint space depend in addition on the dynamic properties of the 
system; for these reasons, they were called dynamic singularities [9]. 

It is interesting to examine the location of the dynamic singularities in a 
system’s workspace.  To do this we need a one to one correspondence from the joint 
space to the cartesian workspace.  However, such a correspondence does not exist, 
even in the case of a six DOF manipulator, because its end-effector position rE, and 
orientation TE, are not only functions of the system’s configuration q, but also of the 
path dependent spacecraft orientation, θ , see also Equations (1) and (2): 

 rE(θ , q) = T0(θ)∑
i=0

6
  0Ti 

ivi6,E  (18) 

 TE(θ , q) = T0(θ) 0T6(q1,..., q6)   (19) 

The ivi6,E are constant vectors.  Out of all the pairs (θ , q) with which a workspace 
point can be reached, some may correspond to a singular configuration, qs.  Then a 
workspace point may or may not induce a dynamic singularity, depending on the 
joint space path taken to reach it. 

To resolve this ambiguity, Path Dependent Workspaces (PDW) were defined to 
contain all workspace locations that may induce a dynamic singularity [9,11].  To 
find these points, note that the distance of a workspace location from the system CM 
does not depend on the spacecraft’s orientation: 

  R = R(q) = || ∑
i=0

N
  0Ti  

ivi6,E||  (20) 

This equation represents a spherical shell in the workspace.  All the singular 
configurations qs are mapped through Equation (20) to a set of shells, whose union 
gives the PDW.  If we subtract the PDW from the reachable workspace, contained in 
a spherical volume defined by: 
 Rmin =  min 

q
  R(q)  (21a) 

 Rmax =  max 
q

  R(q)  (21b) 

we get the Path Independent Workspace, (PIW).  All points in the PIW are 
guaranteed not to induce dynamic singularities.  Then, any point in the PIW can be 
reached from all other points in the PIW, by any path that belongs entirely to the 
PIW. 

If the system is in a dynamically singular configuration, the end-effector is 
constrained to move on a manifold of dimension lower than six.  This means that 
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some workspace points are not reachable with small δq, whatever δq is.  In other 
words, the system is locally uncontrollable.  However, it may still be possible to 
reach any PDW point from any other workspace point, by choosing an appropriate 
path.  This will be demonstrated in the following sections. 
 
C. Controllability in the State Space 
A system with a 6 DOF manipulator has 12 DOF, the additional six corresponding to 
the position and orientation of the spacecraft.  Assuming an Euler angle 
representation of a spacecraft’s orientation, a state space can be formed containing 
the position and orientation of the spacecraft, the joint angles or the end-effector 
position and orientation, and the corresponding velocities or rates.  The dimension of 
such a state space is 2.12.  However, since the linear momentum can be integrated to 
yield a spacecraft’s position as a function of the manipulator links, one cannot set the 
position of the spacecraft independently of the position of the manipulator links.  
This shows that the controllable subspace has dimension at most 2.9.  In addition, 
due to the angular momentum given by Equation (8), a spacecraft’s angular velocity 
cannot be specified independently of the joint rates q

.
 .  Hence, the controllable 

subspace is at most of dimension 2.9-3=15.  Although the exact dimension of the 
controllable subspace has not been established yet, it has been shown by specific 
examples that it is possible to control a spacecraft’s orientation, in addition to the 
manipulator joint variables, by employing special joint space paths.   
 
IV.   Example 
Consider the planar free-floating space manipulator shown in Figure 2.  The system 
parameters are given in Table I.  For this system, vectors ri and li that connect a 
link’s CM to its two joints, see Figure 1, are parallel to the x axis of the ith frame.  
Hence, only the x-component of the barycentric vectors in Equation (A1) is non-
zero, and is given by: 

 0v02,E ≡ α  =  
1
M  r0m0  =  0.426 m 

 1v12,E ≡ β  =  
1
M  {r1(m0+m1)+l1m0} =  0.894 m 

 1v22,E ≡ γ  =  
1
M  l2(m0+m1) + r2  =  0.968 m  (22) 

where M is the total system mass, M = m0 + m1
 + m2.  For this system, only the 

position of the end-effector, rE = [x, y]T, is controlled.  This position is written using 
Equation (18) as: 

 x = α cos(θ) + β cos(θ+q1) + γ cos(θ+q1+q2) 

 y = α sin(θ) + β sin(θ+q1) + γ sin(θ+q1+q2)  (23) 
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where θ, q1 and q2, are defined in Figure 2.  As shown in [9], the system Jacobian is: 

 J*(θ,q) = T0(θ) 0J*(q)  =  ⎣⎢
⎡

⎦⎥
⎤cos(θ) -sin(θ)

sin(θ) cos(θ)
 0J*(q)(24a)  

 0J*(q) = 
1
D  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤-(βs1+γs12)D0  βs1D2-γs12(D0+D1)

-α(D1+D2)+(βc1+γc12)D0    -(α+βc1)D2+γc12(D0+D1)
  (24b) 

where s1 = sin(q1), c12 = cos(q1+q2) etc.  The inertia scalar sums D, D0, D1 and D2 are 
defined in Appendix B, see Equation (B2).  Since each Di (i=0,1,2) and D are func-
tions of q, the Jacobian elements are more complicated functions of the q than their 
fixed-base counterparts.  Note that D represents the inertia of the whole system with 
respect to its CM and thus, is always a positive number. 
 

Table I.  The system parameters. 
 

Body li (m) ri (m) mi (Kg) Ii   (Kg m2) 
0 .5 .5 40 6.667 
1 .5 .5 4 0.333 
2 .5 .5 3 0.250 
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Figure 2.  A planar 2 DOF free-floating manipulator, shown in a dynamically 

singular configuration. 
 

The system inertia matrix, H*, is found according to Equations (14), (B1), and 
(B2).  The result is: 
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 H*(q) = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤0d11+20d12+0d22-

 (D1+D2)2

 D      0d12+0d22-
 D2(D1+D2)

 D 

0d12+0d22-
 D2(D1+D2)

 D      0d22-
D2

2

 D 

  (25) 

where the mixed inertia terms 0dij are defined in Appendix B.  Note that H* is a 2×2 
positive definite symmetric matrix whose elements are functions of the joint angles 
q1 and q2, and its size and structure is the same to the inertia matrix of a fixed base 
system.  Hence, as discussed above, it is easy to show that the example system is 
controllable in its joint space. 

The zero angular momentum for this system is written using Equation (8) as: 

 Dθ̇ +(D1+D2) q̇ 1 + D2 q̇ 2  =  0   (26) 

Multiplying both sides by dt, a Pfafian equation results.  This Pfafian can only be 
integrated if the following condition holds [15]: 

               D{
∂(D1+D2)
∂q2

  - 
∂D2
∂q1

 } - (D1+D2) ∂D∂q2
  + D2 

∂D
∂q1

   =  0   (27) 

However, after some algebra one can show that this condition does not hold, and 
therefore, the angular momentum cannot be integrated to yield θ as a function of q1 
and q2.  Nonholonomic behavior is expected for this system. 

The system Jacobian becomes singular, when its determinant is zero.  This 
condition results in the following equation: 

                     αβD2sin(q1)+βγD0sin(q2)-αγD1sin(q1+q2) = 0 (28) 

The values of q1 and q2 which satisfy Equation (28) and result in dynamically 
singular configurations can be plotted in joint space as shown in Figure 3.  This 
figure also shows that conventional kinematic singularities like q1=kπ, q2=kπ, 
k=0,±1,... still satisfy Equation (28).  However, infinitely more dynamically singular 
configurations exist which cannot be predicted from the kinematic structure of the 
manipulator. 
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Figure 3.  Dynamically singular configurations for the system shown in Figure 

2. 
Figure 3 shows the system in the singular configuration at q1=-65°, q2=-11.41°, and 
the spacecraft attitude at θ=40°. In this configuration, the local inertial motion of the 
end-effector will be the shown in the figure, no matter how the joint actuators are 
driven, and the system is locally uncontrollable.  The best a control algorithm can do 
at such a point is to follow the available direction.  All algorithms that use a Jacobian 
inverse, such as the resolved rate or resolved acceleration control algorithms, fail at 
such a point.  Ones that use a pseudoinverse Jacobian or a Jacobian transpose will 
likely follow the available direction, but may result in large errors. 

To find the limits of the reachable workspace, the distance R of the end-effector 
from the system CM given by Equation (20) is written as: 

R = R(q) =  α2 + β2 + γ2 + 2αβcos(q1) + 2αγcos(q1+q2) + 2βγcos(q2)  (29) 

For this example, the reachable workspace is the area confined between two circles 
with radii: 

 Rmin = 0.352 m = α+β−γ  (30a) 

 Rmax = 2.288 m = α+β+γ  (30b) 

while the PIW is confined between the circles with radii: 
 R1 = 0.554 m  (31a) 

 R2 = 1.436 m   (31b) 

Figure 4 depicts the reachable, PDW, and PIW spaces for this example.  When 
the end-effector path has points belonging to the PDW, such as path B in Figure 4, 
the manipulator may assume a dynamically singular configuration, depending on the 
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path.  On the other hand, paths totally within the PIW region, such as path A, can 
never lead to dynamically singular configurations. 
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Figure 4. The reachable, Path Dependent, and Path Independent 

Workspaces, for the system shown in Figure 2. 
In the next section we explore the use of the nonholonomic behavior of a free-
floating system in planning to achieve various tasks. 
 
V. Path Planning in Joint Space 
a. Self Correcting Planning 
A free-floating system may operate under the Spacecraft-Referenced End-Point 
Motion Control, in which either the manipulator end-point is commanded to move to 
a location fixed to its own spacecraft, or a simple joint motion is commanded, such 
as when the manipulator is to be driven at its stowed position [10].  In general, a 
manipulator’s motion in joint space will change the spacecraft’s orientation, as 
discussed above.  However, there are many cases in which this phenomenon may be 
highly undesirable.  For example, the spacecraft may be required to maintain a 
constant orientation for communication purposes.  Therefore, it would be useful to 
control a system’s orientation, without using limited thruster fuel. 

Due to the nonholonomic behavior of a free-floating system, different joint 
space paths with the same initial and final points, will result in different spacecraft 
orientations.  In addition, a closed path in the manipulator’s joint space, will result in 
a net change in the spacecraft’s orientation.  Based on these observations, a Self 
Correcting Planning technique that can correct for any deviations from a desired 
orientation by executing closed joint space paths, has been proposed [2].  Here, the 
basic elements of this technique are reviewed. 

If a spacecraft’s orientation is described by the 3-2-1 Euler angles, Θ  = 
[θ1,θ2,θ3]T, then these are written using Equation (8) as [16]: 
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 Θ̇   = - S-1(Θ) ω0  =  - S-1(Θ) T0
0D-1  0Dq q

.
   =  G(Θ , q)q

.
  (32) 

where S-1(Θ) is a nonsingular matrix, except at some isolated points, and is given by: 

 S-1(Θ) = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ 1  sinθ1sinθ2/cosθ2  cosθ1sinθ2/cosθ2

 0 cosθ1  -sinθ1

 0 sinθ1/cosθ2 cosθ1/cosθ2

  (33) 

For small changes in the configuration q, Equation (32) is written as: 

 δΘ  = G(Θ , q)δq  (34) 

where G is a 3×N matrix.  Using a Taylor series expansion of Equation (34), and 
assuming a joint space closed path along the vectors δV, δW, -δV, - δW, the 
resulting change in the Euler angles δΘ  is given by [2]: 

δθi ≈ ∑
l=1

N
 ∑
m=1 

N
  [ ∑

n=1

3
 (
∂Gim
∂θn

 Gnl - 
∂Gil
∂θn

 Gnm)  + 
∂Gim
∂ql

  - 
∂Gil
∂qm

  ] δVl δWm   (i = 1,2,3) (35) 

Equation (35) can be used to find the joint space path, as described by vectors δV, 
and δW, to achieve a correction in the spacecraft’s orientation by δΘ .  Note that this 
is possible if at least one of the terms in brackets in Equation (35) is nonzero. 

If the dimension of the manipulator’s joint space is three, Equation (35) 
represents three equations in six unknowns, i.e. δVi, δWi, for i=1,2,3.  The additional 
constraints: 

 δVT δW = 0  (36a) 

 δVT δV = δWT δW  (36b) 

 δV3 = (δV1 + δV2)/2  (36c) 

allow complete determination of the required joint space path.  This technique works 
well if δΘ  is small.  If a large correction is required, this is broken in smaller ones, 
and more than one correction cycles are performed. 
 
Example 
Consider the system introduced in Section IV.  It is desired to estimate the number of 
joint space closed square paths required to achieve a specified change in the 
spacecraft’s orientation.  For this system, G is a function of the configuration q only: 

 G(q) = [G1, G2]  =  [− 
(D1+D2)

D   , − 
D2
D   ]  (37) 

According to Equations (36), vectors δV and δW are chosen to be: 

 δV = [δq, 0]T δW = [0, δq]T  (38) 

where δq represents a small change in a joint angle.  Equation (35) reduces to: 
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 δθ = (
∂G2
∂q1

  - 
∂G1
∂q2

  )δq2= g(q1,q2) δq2  (39) 

where g(q1,q2) is a measure of the influence of a closed joint path on a spacecraft’s 
orientation, and given by: 

 g(q1,q2) = -2 
0d01D2tan(q1)+0d12D0tan(q2)-0d02D1tan(q1+q2)

D2   (40) 

Assuming that at some particular configuration g(q1,q2) is nonzero, Equation (40) 
yields the change in orientation of the spacecraft as a function of the area of the 
closed joint space path.  If this path is a square with side δq, the number of paths 
required to achieve a change Δθ in the orientation, is obtained from Equation (39) as: 

 m ≈ 
Δθ 180∞

(δq)2 π g-
   (41) 

where both Δθ and δq are in degrees, g-  is the value of g(q1,q2) evaluated at (q1+ 
δq/2,q2+ δq/2), and π = 3.14. 
To demonstrate the use of Equation (41), assume that the system is at (θ,q1,q2) = 
(14°,-48°,145°).  Then g-  = g(-43°,150°) = -0.0495.  If the desired final θ is 10°, then 
Δθ = -4°.  Assuming a square joint path of side δq = 10°, and using Equation (41), 
we find that the required number of square paths is m = 46.  Figure 5 shows the 
orientation as a function of m.  After the execution of 46 closed joint paths, the 
spacecraft’s orientation becomes 10.06°. 
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Figure 5.  Changes in the spacecraft orientation θ , during the execution of 

closed joint space paths. 
 
As discussed earlier, this self-correcting technique can be used if g-  is nonzero.  

However, g-  becomes zero for certain configurations q, shown in Figure 6.  When 
the system manipulator is in one of these configurations, its spacecraft orientation 
cannot be affected by small joint space closed paths.  These configurations can be 
mapped to cartesian space areas, using Equation (29) and the same procedure used 
for constructing the PDW.  For this example, one can show that g is nonzero 
everywhere in the system’s PIW.  In other words, if the end-effector is in the PIW, 
the spacecraft orientation is always affected by closed joint space paths. 
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Figure 6.  Configurations at which joint motions have no effect on the 

spacecraft’s orientation θ . 
 
b. Lyapunov-based Planning Techniques 
In some cases, it is desirable to be able to control both a system’s configuration q, 
and the orientation of its spacecraft, using joint motions only.  A Lyapunov-based 
technique designed to achieve this goal was presented in References [7,8], and is 
reviewed here. 

First, a vector y = [Θ , q]T∈RN+3, that contains the variables to be controlled is 
assembled.  If the constant vector yd denotes the desired y, the distance of the current 
y from the desired one is given by Δy: 

 Δy = yd - y  (42) 

Next, a Lyapunov function is constructed as follows: 

 V = 
1
2  ΔyT A Δy  (43) 

where A is a positive definite matrix.  V is positive, becoming zero only when Δy is 
zero.  Since yd is a constant, the time derivative of V is given by: 

 V
.
  = -ΔyT A y

.
   (44) 

Using Equation (32), the following equation can be written for y
.
 : 

y
.
  =[G(Θ , q), I]T q

.
   =  K(Θ , q)q

.
   (45) 
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where I an N×N identity matrix, and K is an (N+3)×N matrix.  Combining Equations 
(44) and (45), V

.
  becomes: 

 V
.
  = - ΔyT AK q

.
   (46) 

and therefore, if one chooses q
.
  according to: 

 q
.
  = (AK)T Δy  (47) 

the time derivative of V is non-positive, since AK(AK)T is positive semidefinite: 

 V
.
  = - ΔyT AK (AK)T Δy  ≤ 0  (48) 

To guarantee that Δy will converge to zero, one must show that for nonzero Δy, V
.
  is 

negative.  However, as discussed in Reference [8], (AK)T has a null space, and Δy 
falls into it.  In such a case, the motion stops, although Δy is nonzero. 

To avoid this problem, a technique called the bi-directional approach has been 
proposed [8].  In this approach, two identical systems called 1 and 2, start at t=0 from 
the initial and final y.  The error Δy is then defined as y1- y2, where yi corresponds to 
system i.  If Δy is driven to zero, then system 1 follows in reverse the path followed 
by system 2, to reach the desired yd.  Although this approach may reduce the chance 
of being caught by the null space of K, it does not eliminate it, and hence such a 
method should be employed with caution. 
 
VI. Path-planning in the Cartesian Workspace 
The previous techniques can be used to find joint paths that either correct a 
spacecraft’s orientation during a manipulator’s motion, or simultaneously control the 
spacecraft orientation, and the manipulator’s configuration.  However, in many 
important applications, the system will operate under an Inertially-Referenced End-
Point Motion Control mode [10].  Here, the primary task is to move the end-effector 
of the manipulator, from one inertial location to another.  As was shown in Section 
IV, this may be a problem if the path has segments in the PDW.  These problems 
become even more serious when a load is captured by the end-effector, because in 
such a case, the PIW is reduced [11].  To avoid these problems, either the workspace 
should be restricted to the PIW, or a planning technique that avoids dynamic 
singularities should be employed.  In this section, one such technique is developed. 

Assume that the task is to move the end-effector from point A to point D, 
without encountering dynamic singularities that will prevent reaching the destination 
point.  Then, the following strategy can be used: 

(a) Start from the final desired spacecraft orientation and end-effector 
position/orientation, and move under joint space control to some point C of the PIW.  
Such a motion is not subject to the effects of dynamic singularities, because these 
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affect the cartesian motion, only.  Record the path taken.  The system reaches point 
C with qDC and ΘDC.   

(b) Start from the initial desired spacecraft orientation and end-effector 
position/orientation, and move under joint space control to some point B of the PIW.  
The system reaches point C with qAB and ΘAB. 

(c) Move from point B to point C, using any path.  The system reaches point C 
with qAC and ΘAC.  In general, these are different than qDC and ΘDC. 

(d) Using small cyclical motions of the end-effector, change the spacecraft 
attitude from ΘAC to ΘDC.  The configuration changes from qAC to qDC, since the 
end-effector does move around the same point in cartesian space. 

(e) Use the recorded path during step (a), to move to point D. 
The fact that small cyclical motions in the cartesian space can change a 

spacecraft’s orientation is due to the following equation, obtained by combining 
Equations (10) and (32), and using an Euler angle representation for the end-effector 
orientation:  
 δΘ  = G(Θ , q){diag(I,S-1(ΘE))J*}-1 δxE  = G*(Θ , xE) δxE (49) 

where δxE = δ[rE,ΘE]T is a small change in the end-effector position/orientation.  
The 3×6 matrix G* is written as a function of Θ , and xE, because if these are given, 
and if N=6, then q can be computed by inverting Equations (18) and (19).  Note that 
Equation (49) has the same structure to Equation (35), though more complicated.  
Since J* is invertible in the PIW, G* exists and hence, closed paths in the cartesian 
space will result in changes in the orientation of a system’s spacecraft.  This 
technique is illustrated below by an example. 
 
Example 
Consider again the example system introduced in Section IV.  The end-effector is 
initially at point A: (x,y) = (2,0), which belongs in the system’s PDW, see Figure 7.  
The initial configuration of the system is (q1,q2) = (-58°, 60.3°) which corresponds 
to an initial spacecraft orientation θ = 21°.  Assume that the end-effector is 
commanded to reach point D: (x,y) = (1.5,1.5).  As the end-effector moves on a 
straight line from the initial to the desired location, a dynamic singularity occurs at 
point E where (θ,q1,q2) = (-32.4°, 74.24°, 10.6°), see Figure 7.  The end-effector 
stops at this point if an inverse Jacobian planning or control algorithm is used, or 
deviates from the desired final point if a transposed Jacobian control algorithm is 
used [10,11]. 

Next, the algorithm introduced above is applied.  The task is to reach point D, 
with θ ≈ 3°.   This θ corresponds to (q1,q2) = (39.4°, 22.2°).  First, the end-effector is 
moved from the desired point D, to some PIW point C: (0.8, 0.5), see path DC in 
Figure 7.  Here a straight line motion is used, and C is reached with θDC=49.1°, see 
Figure 8.  Next, the end-effector is moved from the initial point A, to point B, which 
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for simplicity is taken equal to point C.  The end-effector reaches point B: (0.8, 0.5) 
with (θ,q1,q2) = (14.5°, -49.4°, 145.9°).  The next task is to change the orientation of 
the spacecraft, from θAC=14.5°, to θDC=49.1°.  To this end, the end-effector is 
commanded to follow 11 circular paths, with radius .2m, as shown in Figure 7. 
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m
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Figure 7. A Dynamic Singularity at point E does not allow the end-effector to 

move from point A to D.  Path ABCD avoids singularities by 
employing small circles at point B. 
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Figure 8.  The orientation of the spacecraft θ  as a function of the path ABCD, 
shown in Figure 7. 

The required number of circles has been found by trial and error.  After the execution 
of these circles, the orientation θ changes to 48.9°.  Next, the end-effector is moved 
to D, following the prerecorded path DC in the opposite direction, and reaches D 
with (θ,q1,q2) = (3.3°, 38.9°, 22.7°).  Note that not only point D, but also a final 
spacecraft orientation quite close to the desired one, have been reached.  If a closer 
match in orientation is required, a smaller circle radius and more circles should be 
employed.  Figure 8 depicts the change of θ during as a function of the length of the 
total path ABCD. 
 
VII. Conclusions 
The kinematics and dynamics of free-floating manipulators were examined from a 
fundamental point of view.  It was shown that the dynamic coupling between the 
uncontrolled spacecraft and its manipulator can make the system dynamically 
singular at configurations which cannot be predicted by the system’s kinematic 
properties.  The nonintegrability of the angular momentum introduces nonholonomic 
behavior.  A workspace point can induce a singularity or not, depending on the path 
taken to reach it.  Trouble-free Path Independent Workspaces were defined.  Two 
planning techniques that use nonholonomy to control a spacecraft’s orientation by 
manipulator joint motions were reviewed.  It was shown that in some system 
configurations, joint manipulator motions cannot affect a spacecraft’s orientation. 
Finally, a planning method was presented that permits the effective use of a system’s 
reachable workspace by planning paths which avoid dynamically singular 
configurations. 
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Appendix A 

The general form of the barycentric vectors vik (i,k = 0…N) is [9,11]: 

 vik ≡ 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

 r i
* = - li ∑

j=0

i-1
 
mj
M + ri ∑

j=0

i
 
mj
M        i<k 

 c i
* = - li ∑

j=0

i-1
 
mj
M - ri (1-∑

j=0

i
 
mj
M)          i=k 

 l i
* = li (1-∑

j=0

i-1
 
mj
M) - ri (1-∑

j=0

i
 
mj
M)       i>k 

  (A1) 

where li and ri are defined in Figure 1, mi is the mass of body i, and M is the total 
system mass.  Since li and ri are body-fixed vectors, vik are also body-fixed.  If ivik 
are the barycentric vectors expressed in the ith frame, then ivik are constant vectors, 
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which can be computed only once. These are transformed in the inertial frame as 
follows: 

 vik = T0 0vik  =  T0 0Ti 
ivik  (A2) 

The vectors iviN, used in Equation (1) are obtained by setting k=N. 
The matrices required for the construction of the Jacobian J*, see Equation (11), 

are functions of the vectors iviN,E = iviN + δiN 
irN: 

   0J11 ≡ -∑
i=0

N
  [0Ti 

iviN,E]×       
0J12 ≡ -∑

i=1

N
  [0Ti 

iviN,E]× 0Fi             
0J22 ≡ 0FN (A3) 

where 0Fi (i = 1,…,N) are defined by Equation (5).  The × symbol operates on a 
column vector e, to form a skew-symmetric matrix which corresponds to a cross 
product: 

 e× = 
⎣
⎢
⎡

⎦
⎥
⎤ 0   -ez   ey  

 ez   0   -ex  

-ey   ex   0  
   (A4) 

The mixed inertia matrices Dij are also functions of the barycentric vectors 
[10,11]: 

 Dij ≡ 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

 - M{1(l j
*Tr i

*) - l j
*r i

*T}    i<j 

 Ii + ∑
k=0

N
 mk{vik

2 - vikvik
T}   i=j 

 - M{1(r j
*Tl i

*) - r j
*l i

*T}    i>j 

  (A5) 

where vik, r i
* , and l i

*  are defined by Equation (A1).  These mixed inertia matrices are 
transformed to a spacecraft’s frame according to the following formula: 

 Dij = T0 0Dij T0
T i, j = 1,...,N (A6) 

For simplicity, the following definitions are used: 
 

  0Dj ≡ ∑
i=0

N
  0Dij j = 0,...,N 0D ≡ ∑

j=0

N
  0Dj (A7a) 

 

 
0Dq ≡  ∑

j=1

N
  0Dj

0Fj 
0Dqq ≡ ∑

j=1

N
 ∑
i=1 

N
  0Fi

T 0Dij 
0Fj (A7b) 

 
 

Appendix B 
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For planar systems, the inertia matrices 0Dij in Equations (A7) reduce to scalars 0dij 
which are written as: 

 0d00 = I0 + 
m0(m1+m2)

M   r0
2 

 

 0d10 = 
m0r0
M   {l1(m1+m2) + r1m2}cos(q1) = 0d01 

 

 0d20 = 
m0m2

M   r0l2cos(q1+q2) = 0d02 
 

 0d11 = I1 + 
m0m1

M   l1
2 + 

m1m2
M   r1

2 + 
m0m2

M  (l1+r1) 2 

 

 0d21 = { 
m1m2

M   r1l2 + 
m0m2

M   l2(l1+r1)}cos(q2) = 0d12 
 

 0d22 = I2 + 
m2(m0+m1)

M   l2
2 (B1) 

 
The mixed inertia sum defined by Equations (A7) become: 

 0Dj ≡ Dj = ∑
i=0

2
  0dij   (j=0,1,2) 0D  ≡  D = D0 + D1 + D2 

 
0Dq = [D1+D2    D2]                  0Dqq

  =  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤0d11+20d12+0d22   

0d12+0d22 

0d12+0d22   
0d22 

  (B2) 


