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ABSTRACT 

In many applications of advanced robotic systems, reaction forces and moments transmitted by a 

manipulator to its base are highly undesirable. Such reactions reduce the accuracy of high-speed 

manipulators, destroy zero-g environments in space, require the use of thruster fuel to stabilize 

free-flying space robots, or excite suspension modes in mobile robotic systems. In this paper, we 

analyze the problem of force and torque transmission in robotic systems, and propose design and 

planning methods that can reduce it, or eliminate it. It is shown that designing a force-balanced 

manipulator with an invariant mass matrix, and employing appropriate trajectory planning, can 

result in reactionless motions. Two redundant planar manipulator designs demonstrate the 

usefulness of the proposed methods. An important advantage of these methods is that 

manipulators can be used either as redundant ones, or as two DOF reactionless systems. 

 

 
I. INTRODUCTION 

In many applications of advanced robotic systems, reaction forces transmitted by a manipulator 

to its base are highly undesirable. In an industrial setting, the accuracy of a rapidly accelerating 

manipulator will be degraded by vibrations induced by the transmission of large reaction forces 

to its mounts, [1]. In space, dynamic forces due to the accelerating links of a manipulator 

mounted on a satellite will disturb the position and orientation of the latter [2,3]. If allowed to 

transmit reaction forces, manipulators operating in a micro-gravity environment will have 

adverse effects on it [4]. Manipulators mounted on compliant mobile bases, be it a truck, a Mars 

rover, or the Shuttle Canadarm, will inevitably excite the base dynamics and result in poor 

dynamic performance and accuracy [5,6]. 

Moving a manipulator slowly is the simplest way to reduce the reactions to within acceptable 

levels. Reducing manipulator reactions by cost function minimization applied to redundant 

manipulators was proposed in [7]. Complete shaking force elimination can be achieved by fixing 

the center of gravity of the manipulator; this is accomplished by the addition of counterweights 
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or by relocating the support point of the manipulator [1,8,9,10,11]. Minimization of the rocking 

moment can be accomplished by introducing counteracting torques. This is normally done using 

additional actuators with a preset inertia, along with a suitable controller [1]. However, these 

actuators can not be used to enhance the system manipulative capabilities. In space, there exist 

paths that if followed by a manipulator mounted on a free-floating spacecraft, they will result in 

zero attitude (orientation) disturbance for the spacecraft. However, use of such paths may require 

relocating the spacecraft to some favorable initial position [5]. In addition, they will not 

eliminate reaction forces, i.e. the spacecraft will still translate. 

In this paper we analyze the problem of force and moment transmission by manipulators and 

propose guidelines that can result in reactionless motions. These include static balancing of the 

manipulator, invariance of its mass matrix, and use of special joint-space reactionless 

trajectories. Two planar three Degree-of-Freedom (DOF) manipulators with two or three direct 

drive actuators mounted at their base and sharing a common axis are employed. The system 

Center of Mass (CM) is fixed by static balancing, and the dynamics of the system are rendered 

invariant. The latter feature simplifies the planning of reactionless paths, by requiring that such 

paths belong in fixed orientation joint space planes. Motions planned in such a way result in 

minimal reactions, whereas non-reactionless motions are shown to transmit large moments and 

forces. An advantage of these designs is that the manipulators can be used either for tasks that 

require three Degrees-of-Freedom (DOF), or as two DOF reactionless systems. 

 

 
II. BASE FORCE AND MOMENT BALANCING 

Consider a manipulator as an articulated mechanism that applies a force f
B
 and a moment n

B
 to 

its base, see Fig. 1. In the presence of gravity, the manipulator’s weight is applied at its CM. If 

the only other force applied to the manipulator is the force at its base, -f
B
, then the following 

equation holds 

 ! fB + Mg = f ext =
d

dt
M˙ r CM{ }    (1) 
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where M is the total manipulator mass, g is the acceleration of gravity vector, and ˙ r 
CM

 is the 

velocity of the system CM. Therefore, the force transmitted to the base is given by 

 f B = !
d

dt
M˙ r CM{ } + Mg    (2) 

and has a dynamic component due to the change in system’s linear momentum, and a static 

component due to gravity (which is zero in space). The concern here is to eliminate the dynamic 

component of base force reactions, since they are partly responsible for base excitation. The 

dynamic components in Eq. (2) are zero if the system CM does not accelerate, i.e. if ˙ r 
CM

 = const. 

Assuming zero initial CM velocity, integration of this condition yields rCM = const., in other 

words, to transmit zero dynamic forces, the manipulator’s CM has to be fixed. In principle, this 

condition can be achieved by design. To this end, note that by definition 

 rCM =
1

M
mj

j=1

l

! rc, j   (3) 

where l is the number of manipulator links, mj  is the mass of the jth link and rc, j  the position 

vector of its CM. Differentiating Eq. (3) and using the chain rule, results in 

   (4) 

where, by definition  

 = mj

j=1

l

!
"rc , j

"qi
  (5) 

In the above relationship, n is the number of DOF, ˙ q i  is the ith joint rate,  is a matrix whose 

columns are the  vectors, and ˙ q  is the vector of joint rates. Note that from Eq.(4) the condition 

rCM = constant, can hold for any set of ˙ q  if and only if all  are identically equal to zero, or 

equivalently when  ∫ 0 . In principle, the n conditions  = 0 can be satisfied by proper system 

design, usually by force balancing. 

It can be shown that the equations of motion of a manipulator can be written as [13] 

  (6) 
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where q = [q
1
,…, qn]

T  is the vector of generalized coordinates,  the vector of 

actuator torques, H(q)  is the n∞n manipulator mass matrix, V (q, ˙ q )  is the vector of nonlinear 

velocity terms, and g is the constant acceleration due to gravity vector. Consequently, setting  

equal to zero force balances the manipulator and simplifies the system’s dynamics. Note that 

force balancing is not possible for any manipulator; for example, for the case of planar systems 

without axisymmetric link groupings, force balancing by internal mass redistribution is possible 

if, and only if, for each link there is a path to the ground by way of revolutes only [8]. Hence, in 

this paper we consider manipulators with revolute joints, only. 

The case of base moment balancing is more complicated. The moment transmitted to the 

base of the manipulator, n
B

, is given by 

    (7) 

where Ij is the jth link inertia, j its inertial angular velocity. It can be recognized that the sum in 

Eq. (7) represents the angular momentum of the manipulator with respect to its base. The static 

moment can be eliminated by fixing the system CM at the first joint. Assuming zero initial 

velocities, Eq. (7) suggests that to eliminate dynamic moment disturbances this angular 

momentum must be zero 

   (8a) 

The above expression can be written compactly as  

 D(q)˙ q = 0   (8b) 

where D(q) is an inertia-type matrix, of size 3∞n [3]. In general, it not possible to set by design 

D = 0. Condition (8) can also be achieved by trajectories for which ˙ q  is in the null space of 

D(q). In practice, finding such trajectories is very difficult, because Eq. (8) cannot be integrated 

to yield constraints in terms of the q’s. As shown in this paper, finding such trajectories can be 

simplified by proper design.  
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Consider next a planar manipulator with revolute joints for which the dynamic reaction 

forces were eliminated. If s actuators are mounted at the base and act along the same axis k, then 

the n
B

 is 

 n
B

 = - (τ1 + … + τs)k = 
i =1

s

! { hij
˙ ̇ q j

j=1

n

! +

j =1

n

!
k =1

n

!
"hij

"qk

#
1

2

"hjk

"qi

$ 

% 
& 

' 

( 
) ˙ q j ˙ q k}k (9) 

where hij are the components of the system’s mass matrix H. The condition n
B

 = 0 results in a 

very complicated constraint among accelerations, velocities and positions. However, if all hij are 

constant, i.e. if the mass matrix is invariant, the above equation becomes a second order linear 

differential equation which can be integrated twice. The first integration results is Eq. (8b), i.e. 

the angular momentum of the system, where D(q) is a constant matrix. Integrating this equation 

once more results in a constraint between the joint angles; satisfying this constraint generates 

motions that do not transmit moment reactions to the base. If the manipulator has also been force 

balanced, then this constraint can be visualized as a reactionless path in the joint space. This 

method is employed in the design of the two reaction-free manipulators presented in this paper. 

From the above analysis, the following two design guidelines emerge for reactionless 

manipulators (a) force balance a manipulator with revolute joints to eliminate dynamic forces, 

and (b) use mass matrix invariance and special planning techniques to maintain zero angular 

momentum. Since as explained above, guideline (b) introduces a constraint between the joint 

angles, redundant manipulator designs must be employed for practical designs. 

Note that an alternative method for setting n
B

 equal to zero, is to use additional base 

actuators, like reaction wheels, to cancel any reaction moments. This method has been used in 

space systems [2,3], and was employed in the design of a high-acceleration minipositioner [1]. 

However, a limitation of this method is that the additional actuators cannot be used to increase 

the DOFs of a manipulator. In contrast to this, the method proposed in this paper allows the 

manipulators to be used either as reaction-free, or as redundant systems. 

As shown below, these guidelines are implemented on two 3 DOF redundant planar 

manipulators, with at least two actuators mounted at their base with the actuators acting along the 
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same axis but in opposite directions. If a single actuator is mounted at the base joint, then it will 

be required to apply zero torque during a reactionless trajectory; this design would result in a 

nonholonomic system behavior and will not be discussed in this paper. To maintain planar 

operation, the manipulators are assumed to be symmetric with respect to their plane of action. 
 
 
III. MANIPULATOR DESIGN 

The above ideas are demonstrated using two manipulator designs that meet the requirements for 

reaction-free motion. The first is based on a five bar mechanism with an additional link, see Fig. 

2 (a), and is referred to as “Manipulator I.” The second is based on a nine-link parallel 

mechanism, see Fig. 2 (b), and is referred to as “Manipulator II.” 

 

A. Manipulator I. 

Consider the 3 DOF parallel manipulator with five mobile links shown Fig. 2 (a). This 

manipulator is redundant in terms of the in plane positioning requirements. In this section it is 

shown how a combination of its physical parameters, along with proper trajectory planning, can 

result in a reactionless manipulator. 

As depicted in Fig. 2, the manipulator is composed of a five-bar mechanism (links 1, 2, 3, 

and 4), connected to an additional link (link 5). The actuators for links 1 and 2 are located at the 

base, and share a common axis. Therefore, the base moment for this manipulator is given by 

 n
B
= !("

1
+"

2
)k   (10) 

where i are actuator torques, and k is the unit vector normal to the plane of motion. It can be seen 

that for nB  = 0, the two base actuators must apply equal and opposite torques to the base. This 

requires special trajectories, and therefore, when operating under the zero reaction mode, the 

manipulator will have two DOF .  

For this manipulator, detailed expressions for H(q) , V(q,˙ q ) , , and D(q) , are provided 

in Appendix A. The requirements for force balancing are derived by setting Equations (A4) 
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equal to zero. For zero moment transmission, either H(q)  or D(q)  must become independent of 

the configuration q. This is achieved by setting configuration dependent terms equal to zero. 

Both zero dynamic force and moment transmission is possible when the following four 

conditions hold 

 lc5= 0  (11a) 

 m1lc1 + m3lc3 + m4l1 +m5l1 = 0   (11b) 

 m2lc2 + m3l2 ! m4lc4 !m5l4 = 0   (11c) 

 m3l2lc3 !m4l1lc4 !m5l1l4 = 0   (11d) 

where lci is the CM of link i . Although Eq. (11a) is trivial, the last three equations correspond to 

four unknowns, namely to lci for i=1,...,4. Eqs. (11b-d) are written in matrix form as 

 
m1 0 m3 0

0 m2 0 !m4

0 0 m3
l2

l1

!m4

" 

# 

$ 

$ 

$ 

$ 
$ 

% 

& 

' 

' 

' 

' 
' 

l
c1

l
c2

l
c3

l
c4

" 

# 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

=

m5l4

!(m4 + m5)l1

m5l4 ! m3l2

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

  (12) 

or compactly as 

 Alc = k  (13) 

This linear system is under-constrained and has an infinite number of solutions including the 

minimum-norm solution. If not all lci have the same importance in terms of feasible designs, one 

can minimize Wlc instead of lc, where W is a diagonal weighting matrix. In such case, the 

weighted minimum norm solution for lc is 

 lc = VA
T
(AVA

T
)
!1 k  (14a)  

where 

 V =W
!1
(W

!1
)
T   (14b) 
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Eq. (13) was solved for given mass and geometric manipulator properties, and for 

W = diag(0.14, 0.2, 1.0, 1.0) . The results are displayed in Table I. The above parameters result 

in an invariant mass matrix along with a force balanced manipulator. The dynamic equations 

reduce to 

 
!

1

!
2

!
3

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

=

h
11

0 0

0 h
22

h
23

0 h
32

h
33

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

˙ ̇ q 
1

˙ ̇ q 
2

˙ ̇ q 
3

" 

# 

$ 

$ 

$ 

% 

& 

' 

' 

' 

  (15) 

 

B. Manipulator II 

Here we briefly present the design for a manipulator with nine mobile links and all its three 

actuators mounted at its base. This manipulator is redundant in terms of the in plane positioning 

requirements, and was proposed as a finger for a mechanical hand [12]. As depicted in Fig. 2 (b), 

the manipulator is composed of three parallel mechanisms; links 1-4-6 are always mutually 

parallel, and so are 2-5-8 and 3-7-9. Each set of parallel links can be made to rotate while the 

other links are either stationary or translating. The driving links (1, 2, & 3) and their direct drive 

actuators are on the base; this characteristic simplifies the decoupling of the manipulator’s mass 

matrix and results in simpler dynamic equations. As evident from Fig. 2 (b), the following sets of 

links share common lengths: l1 = l4 = l6,  l5 = l8, and l3 = l7. 

Since all three joint actuators share the same axis, the total moment applied to the base is 

 n
B

 = -(τ1 + τ2 + τ3)k  (16) 

The same procedure as described above is applied to this manipulator. To this end, detailed 

expressions for H(q) , V(q,˙ q ) , , and D(q) , are provided in Appendix A. Setting  to 

zero results in three equations, and eliminating configuration dependent terms in D(q)  or H(q) , 

yields three more [14]. As for the previous manipulator, these equations have the form of Eq. 

(13). In this case, there are nine design parameters, namely the locations of the nine centers of 

mass, lci, i=1,…,9 and the problem be expressed in matrix format as follows 
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m
1
0 0 m

4
0 m

6
0 0 0

0 m
2
0 0 !m

5
0 0 !m

8
0

0 0 m
3

0 0 0 m
7

0 !m
9

0 0 0 m
4

l
2

l
1

!m
5

0 0 !m
8

0

0 0 0 0 0 m
6

l
3

l
1

m
7

0 !m
9

0 0 0 0 0 0 0 !m
8

l
3

l
5

m
9

" 

# 

$ 

$ 

$ 

$ 

$ 

$ 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

' 

' 

' 

' 

' 

' 
 

l
c1

l
c2

l
c3

l
c4

l
c5

l
c6

l
c7

l
c8

l
c9

! 

" 

# 

# 

# 

# 

# 

# 

# 

# 

# 

# 

$ 

% 

& 

& 

& 

& 

& 

& 

& 

& 

& 

& 

=

!(m5 + m7 + m8 + m9) l1

m9l5 ! m4l2

!(m8 + m6 ) l3

m9l5

!m8l3

0

" 

# 

$ 

$ 

$ 

$ 

$ 

$ 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

' 

' 

' 

' 

' 

' 
 (17) 

Again a minimum norm solution is sought. Using W = diag (1.0, 0.2, 1.0, 1.2, 1.0, 1.0, 1.0, 

1.2, 1.0), Eqs. (14) are solved and the manipulator’s geometric parameters of the manipulator are 

displayed in Table II. Then, the dynamic equations given by Eq. (6) become 

 
!

1

!
2

!
3

" 

# 

$ 

$ 

% 

& 

' 

' 

=

h
11

0 0

0 h
22

0

0 0 h
33

" 

# 

$ 

$ 

% 

& 

' 

' 

˙ ̇ q 
1

˙ ̇ q 
2

˙ ̇ q 
3

" 

# 

$ 

$ 

% 

& 

' 

' 

  (18) 

resulting in a dynamically decoupled system. 

 

 
IV. REACTIONLESS TRAJECTORY PLANNING 

For both manipulators, setting nB = 0, and using Eqs. (10) & (15) or Eqs. (16) & (18), results in 

constraints of the form: 

 ˙ ̇ q 
1
+ !

2
˙ ̇ q 

2
+ !

3
˙ ̇ q 

3
= 0   (19) 

where , and  are constants and functions of the invariant mass matrix elements. Eq. (19) is 

integrated to yield a constraint in terms of the link angles q. With zero initial conditions for the 

rates, the integration results in 

 ˙ q 
1
+ !

2
˙ q 

2
+ !

3
˙ q 

3
= 0   (20) 
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which is a manifestation of zero angular momentum, see Eq. (8). Physically, this equation 

suggests that reactionless motions require that at least one joint be moving opposite to some 

other one. Since  and  are constants, the equation can be integrated again to yield 

 q
1
+ !

2
q
2
+ !

3
q
3
= b   (21) 

where the constant b is called here the pose constant, because it depends on the initial set of link 

angles. Equation (21) represents a plane in the space of q
1
! q

2
! q

3
, with  = [1, , ]T its normal 

vector. Moving in a reactionless path requires Eq. (21) to be satisfied. Furthermore, for a given 

initial configuration q, the pose constant is set, and all via points and the target must be on the 

same plane in the q space. Since a redundant manipulator can reach points in its workspace in 

more than one pose, it follows from Eq. (21) that a single x-y coordinate can have a range of b 

constants associated with it. Each of these b constants defines a different plane, but since the 

normal vector  is fixed for a given manipulator, all these planes are parallel.  

Given a point in the x-y plane, the range of pose constants which correspond to it can be 

found using inverse kinematic relationships. A plot of q1 for each pose versus the pose constant b 

is shown in Fig. 3, for two (x, y) points. This plot can also be used to determine if two points can 

be joined by a reactionless path. To this end, it suffices to have plot overlap, such as the one 

shown in Fig. 3. For example, the point (0.55, 0.0) is reachable from (0.8, 0.0) if the initial angle 

q1 is between 0.50 and 1.25 rad. 

Path planning can be facilitated if the set of points that can be accessed by a reactionless path 

from some initial configuration is known. To find this reactionless workspace, it is assumed that 

the first joint q
1
 can rotate freely, while the relative joint angles a

1
, and a

2
 defined in Fig. 2, 

comply with some given joint limits. 

Using manipulator II as an example, Fig. 2 (b), yields the following expressions for 1 and 2 

 a
1
= q

2
! q

1   (22a) 

 a
2
= q

3
! q

2
+ "   (22b) 
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The forward kinematic equations for this manipulator are, see Fig. 2 (b) 

 x = l1 cos(q1) ! l5 cos(q2 ) ! l9 cos(q3)   (23a) 

 y = l1 sin(q1) ! l5 sin(q2) ! l9 sin(q3)   (23b) 

Substituting Eq. (22) in Eqs. (23), and writing the result in matrix form, results in 

 
x

y

! 

" 
# 

$ 

% 
& 

=
cos(q1) ' sin(q1)

sin(q1) cos(q1)

! 

" 
# 

$ 

% 
& 

l1 ' l5 cos(a1) + l9 cos(a1 + a2)

'l5 sin(a1) + l9 sin(a1 + a2)

! 

" # 

$ 

% & 
  (24) 

Furthermore, using Eqs. (21) and (22), q
1
 can be expressed as 

 q1 =
b

1+ ! 2 + !3
+
! 3(" # a2 ) # a1(! 2 + ! 3)

1 + ! 2 + ! 3
= b

*
+ $(a1,a2)  (25) 

where b* = b/(1++) is a constant, and φ an angle function of 1 and 2. Substituting Eq. (25) in Eq. 

(24) yields 

 
x

y

! 

" 
# 

$ 

% 
& 

=
c(b

*
) 's(b*)

s(b
*
) c(b

*
)

! 

" # 

$ 

% & 

c(() 's(()

s(() c(()
! 

" 
# 

$ 

% 
& 

l1 ' l5c(a1) + l9c(a1 + a2 )

'l5s(a1) + l9s(a1 + a2 )

! 

" # 

$ 

% & 
 (26) 

where c(), s() denote the cosine and the sin of an angle. For a given initial pose, b and therefore 

b*, are fixed. Hence, all the points that can be accessed starting from an initial pose can be found 

by varying the relative joint angles in the allowed range. Similar equations apply to manipulator 

I. 

The reactionless workspace is plotted in the Cartesian plane using Eq. (26) above. The 

resulting workspaces for manipulators I and II are shown in Fig. 4 for some initial pose constant 

b. Any two points in these workspace, shown as the gray region, can be connected by a 

reactionless path. Note that since the pose constant only appears in the first rotation matrix in Eq. 

(26), the shape of the reactionless workspace is independent of this constant. However, its 

orientation on the Cartesian plane depends on it, i.e. changing the pose constant has the effect of 

rotating the gray area shown in Fig. 4. 
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V. SIMULATIONS AND COMPARISONS 

The dynamic equations of the 3 DOF parallel manipulators were programmed into MATLAB. 

The linear system of Eqs. (12) and (17) were used to compute the physical parameters of the 

manipulators, required for reactionless motions. The results are displayed in Tables I and II. 

To calculate the reaction moments at the base, an initial and final point were chosen from the 

reactionless region and the travel time was set at 1.5 s. The x-y pairs along with the b constant 

determine the initial and final angles of the manipulator, qA, and qB, see Eqs. (22), (25) and (26). 

The reactionless paths selected are straight line in the three-dimensional joint space connecting 

qA, and qB, since such lines lie on the plane defined by Eq. (21). In all simulation results, the 

manipulators transmit zero reaction forces to their bases. 

Quintic polynomial trajectories were used in the simulation in order to have continuous joint 

velocity and acceleration profiles. A computed torque control scheme was employed to 

determine the motor torques required, and the control gains were kept the same in all cases. Fig. 

5 shows snapshots of a reactionless motion sequence in Cartesian space for manipulator I. It can 

be noticed that as the distal link moves outwards, the first link moves in opposite way, so that the 

angular momentum of the system is conserved. Fig. 5 also includes the required actuator torques 

τ1, τ2, and τ3, during the reactionless motion. Note that the resulting base reaction is practically 

zero. 

Fig. 6a depicts the required actuator torques τ1, τ2, and τ3, as well as the resultant base 

reaction for a manipulator II reactionless trajectory. As shown in Fig. 6 (a), This reaction is 

practically zero. For comparison, manipulator II was simulated to follow the same Cartesian path 

as in Fig. 6 (a), but with different poses at the via points; thus in the second motion no 

reactionless plane was adhered to. As can be seen from Fig. 6 (b), in this case base reactions are 

substantial. Fig. 6 also includes snapshots of the corresponding motion sequences in Cartesian 

space. From the snapshots it is evident that while some links move opposite to other links in the 

reactionless motion, this does not occur in the other case. 
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VI. CONCLUSIONS 

Analysis of force transmission properties of manipulators has shown that dynamic reactions can 

be eliminated if the system CM is kept fixed. For planar mechanisms with revolute joints, this 

condition can be satisfied by proper design. However, moment balancing of such systems 

requires in general appropriate trajectory planning. It was shown that rendering the manipulator 

mass matrix invariant, simplifies the planning of reactionless paths, by requiring that these paths 

belong in fixed orientation joint space planes. Motions planned in such a way result in minimal 

reactions, whereas non-reactionless motions transmit large reactions. Two three-DOF planar 

manipulators were designed according to the analysis in this paper, and were used to demonstrate 

the value of the proposed methods. An additional advantage of these methods is that the 

manipulators can be used either as redundant, or as two DOF reactionless systems. 
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APPENDIX A 

For the 3 DOF manipulator in Fig. 2 (a), the equations of motion have the form given by Eq. 

(6). The components of the mass matrix H are given by 

 h
11
= I

1
+ I

3
+m

1
l
c1

2
+m

3
l
c3

2
+m

4
l
1

2
+m

5
l
1

2  

 h12 = (m3l2lc3! m4l1lc4 !m5l1l4 )cos(q1 ! q2 ) !m5l1lc5 cos(q1 ! q2 ! q3)  

 h13 = !m5l1lc5 cos(q1 ! q2 ! q3)  

 h22 = I2 + I4 + I5 +m2lc2
2
+m3l2

2
+ m4lc4

2
+m5lc5

2
+m5l4

2
+ 2m5l4lc5 cos(q3 )  

 h23 = I5 +m5lc5
2
+m5l4lc5 cos(q3)  

 h
33
= I

5
+m

5
l
c5

2   (A1) 

The components of the V and G = Tg vectors in Eq. (6) are 

 
v1 = (m3l2lc3 ! m4l1lc4 ! m5l1l4 )sin(q1 ! q2 ) ˙ q 2

2

! m5l1lc 5 sin(q1 ! q2 ! q3 )( ˙ q 2 + ˙ q 3 )
 

 

v2 = (!m3l2lc 3 + m4l1lc 4 + m5l1l4 )sin(q1 ! q2 ) ˙ q 1
2

+ m5l1lc5 sin(q1 ! q2 ! q3 ) ˙ q 1
2

! 2m5l4lc 5 sin(q3 ) ˙ q 2 ˙ q 3 ! m5l4lc 5 sin(q3 ) ˙ q 3
2

 

 v3 = m5lc5l1 sin(q1 ! q2 ! q3 )˙ q 1
2
! m5lc 5l4 sin(q3 ) ˙ q 2

2  
 

 g1 = (m1lc1 +m3lc3 + m4l1 +m5l1 ) gcos(q1)  

 g2 = (m2lc2 +m3l2 ! m4lc4 !m5l4 )gcos(q2 ) !m5lc5gcos(q2 + q3 )  
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 g3 = !m5lc5 g cos(q2 + q3 )   (A3) 

The columns of the  matrix given by Eq. (5) are 

 

 

    (A4) 

where the vectors  are given by 
 

  (k = 1,2)  (A5) 

The inertia-type matrix D(q) is given by 

 D(q) = [d1, d2, d3]    (A6) 

with elements given by 

 
d1 = I1 + I3 +m1lc1

2
+ m3lc3

2
+m4l1

2
+m5l1

2
+

+ (m3l2lc3 !m4l1lc4 ! m5l1l4 )cos(q1 ! q2 )

! m5l1lc5 cos(q1 ! q2 ! q3 )

  

 
d2 = I2 + I4 + I5 + m2lc2

2
+m3l2

2
+ m4lc4

2
+ m5lc5

2
+ m5l4

2
+ 2m5l4lc5 cos(q3 ) +

+ (m3l2lc3 !m4l1lc4 ! m5l1l4 )cos(q1 ! q2 )

! m5l1lc5 cos(q1 ! q2 ! q3 )

 

 d3 = I5 +m5lc5
2
!m5l1lc5 cos(q1 ! q2 ! q3 )   (A7) 

For the 3 DOF manipulator in Fig. 2 (b), the equations of motion also have the form given by 

Eq. (6). The components of the mass matrix H are given by 

 h11 = I1 + I4 + I6 +m1lc1
2
+ m4lc 4

2
+ m6lc6

2
+ (m5 + m7 +m8 +m9 )l1

2   

 h12 = (m4l2lc4 !m5l1lc5 ! m8l1lc8 !m9l1l5)cos(q1 ! q2)  

 h13 = (m6l3lc6 +m7l1lc7 + m8l1l7 !m9l1lc9 )cos(q1 ! q3)  
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 h23 = (m9l5lc9 !m8l7lc8 ) cos(q2 ! q3)  

 h
33
= I
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c9
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The components of the V and G = Tg vectors in Eq. (6) are 

 
v1 = (m4l2lc 4 ! m5l1lc5 ! m8l1lc8 ! m9l1l5)sin(q1 ! q2 )˙ q 2

2

+ (m6l3lc6 + m7l1lc7 + m8l1l7 ! m9l1lc9 )sin(q1 ! q3) ˙ q 3
2

 

 
v2 = (!m4l2lc4 + m5l1lc5 + m8l1lc8 + m9l1l5)sin(q1 ! q2) ˙ q 1

2

! (m8l7lc8 + m9l5lc9 )sin(q2 ! q3) ˙ q 3
2

 

 
v3 = (!m6l3lc6 ! m7l1lc7 ! m8l1l7 + m9l1lc9 )sin(q1 ! q3) ˙ q 1

2

+ (m8l7lc8 ! m9l5lc9 )sin(q2 ! q3) ˙ q 2
2

  (A9) 

 

 g1 = (m1lc1 +m4lc4 +m6lc6 + (m5 +m7 +m8 +m9)l1 ) gcos(q1)  

 g2 = (m2lc2 +m4l2 !m5lc5 !m8lc8 !m9l5 )gcos(q2)  

 g3 = (m3lc3 + m6l3 +m7lc 7 +m8l7 ! m9lc9 )gcos(q3)   (A10) 

The columns of the  matrix given by Eq. (5) are 

1  

2  

 3   (A11) 

where k , (k = 1,2,3), are given by 

   (A12) 

The elements of the inertia-type matrix D(q), see also Eq. (A6) are given by 
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d1 = I1 + I4 + I6 +m1lc1

2
+m4lc4

2
+m6lc6

2
+ (m5 +m7 + m8 + m9)l1

2
+

+ (m4l2lc4 !m5l1lc5 !m8l1lc8 !m9l1l5)cos(q1 ! q2) +

+ (m6l3lc6 +m7l1lc7 +m8l1l7 !m9l1lc9 )cos(q1 ! q3)

 

 
d2 = I2 + I5 + I8 +m2lc2

2
+ m5lc5

2
+m8lc8

2
+m4l2

2
+m9l5

2
+

+ (m4l2lc4 !m5l1lc5 !m8l1lc8 !m9l1l5)cos(q1 ! q2)

+ (m9l5lc 9 !m8l7lc8 )cos(q2 ! q3)

 

 
d3 = I3 + I7 + I9 +m3lc3

2
+m7lc7

2
+m9lc9

2
+ m6l3

2
+m8l7

2
+

+ (m6l3lc6 +m7l1lc7 +m8l1l7 !m9l1lc9 )cos(q1 ! q3)

+ (m9l5lc 9 !m8l7lc8 )cos(q2 ! q3)

  (A13) 
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Fig. 1.  Forces and moments applied on manipulator. 
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Fig. 2. Two 3 DOF manipulators. (a) A five-bar mechanism manipulator with an 

additional link, (b) a nine-link parallel manipulator. 
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Fig. 3. Range of q1 and corresponding b pose constants for two (x, y) points 
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Fig. 4. Reactionless workspaces. (a) Manipulator I for b = 2.2 rad,  

 (b) Manipulator II for b = 2.4 rad. 
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Fig. 5. Reactionless Cartesian motion and torque profiles for Manipulator I. 
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Fig. 6  Cartesian motions and resulting torque profiles for Manipulator II. (a) 

Reactionless, (b) Cartesian path as in (a), but non-reactionless. 
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Tables 
 

 

Table I. Manipulator I Parameters 
 

i li (m) mi (kg) Ii (kgm2) lci (m) 
1 0.45 4.00 0.1351 -0.2539 
2 0.30 0.85 0.0028 -0.1387 
3 0.45 0.45 0.0180  0.0571 
4 0.20 1.50 0.0245 -0.0819 
5 0.25 0.70 0.0093  0 

 

 

Table II. Manipulator II Parameters 
 

i li (m) mi (kg) Ii (kgm2) lci (m) 
1 0.50 7.00 0.2501 -0.2214 
2 0.18 1.45 0.0025 -0.1111 
3 0.20 2.00 0.0180 -0.1605 
4 0.50 1.50 0.0199  0.2016 
5 0.46 0.70 0.0215 -0.0110 
6 0.50 1.50 0.0419 -0.0349 
7 0.20 1.15 0.0143 -0.0682 
8 0.46 0.50 0.0162  0.0032 
9 0.30 0.25 0.0058  0.0027 

 


