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I. INTRODUCTION 

In the simulation phase of a mechanical system, a 

representative model of the system is chosen, the dynamical 

equations describing its behavior are derived as a system of 

Ordinary Differential Equations (ODEs), and finally an ODE 

solver is selected from a collection of algorithms and packages, 

to solve the equations. The large number of methodologies 

available for solving such an Initial Value Problem (IVP) can be 

explained by the heterogeneity of the various realistic dynamical 

problems, and the great difficulty to be all solved numerically by 

a single algorithm. Notably, mechanical systems that experience 

repeated impacts, such as legged robots [1] and on-orbit 

manipulators [2], can present a very rich repertoire of behaviors, 

making the selection of the proper solver a tedious and 

challenging task. What makes a good selection is the adequately 

high speed of the solver for a given accuracy, as well as the small 

deviation from the true response – usually not known in 

analytical form. 

In this work, we focus on mechanical systems with impacts 

and especially on hopping single-legged robots, which we 

consider as simple yet representative for a whole class of systems 

that include compliant elements in their structures and 

experience repeated impulsive impacts. Recently, the robotics 

community has been demonstrating advanced examples of 

efficient, agile and intelligent legged robots, followed by a large 

increase in related research output, including theoretical and 

experimental results accompanied mostly by simulation 

experiments. However, the criteria used for selecting an ODE 

solver in the simulations are obscure in most of the works, while 

even for problems of similar structure, very different solvers are 

chosen. For instance, focusing on legged robotics simulations, 

one can find works employing solvers recommended for stiff 

problems – Matlab ode23s in [3] – and also for nonstiff problems 

– Matlab ode113 in [4] – for solving similar problems. To the 

authors’ knowledge, the community lacks a set of guidelines to 

evaluate, compare and choose the proper solver for a given 

problem in this class. The proper choice of a solver is time 

consuming, since one has to first find the solvers that converge 

to a solution, and then choose the most effective one. Taking into 

account demanding procedures like fixed point searching in 

legged robots [5] that can take hours or days, choosing the 

appropriate solver, and solving a problem efficiently with the 

desired level of accuracy is essential in hard problems such as 

those involving mechanical impacts. 

During the last decades, important theoretical works in the 

field of numerical analysis showed how different methodologies 

for solving ODE systems can be implemented into algorithms for 

solving different kinds of problems. Detailed literature reviews 

are included in [6] and [7]. Seminal works early set the basis for 

the systematic evaluation of ODE solvers, while the numerous 

references found therein reveal the long history of attempts been 

made in the field [8], [9], and [10]. The initial analyses and 

results distinguished problems mainly into stiff and nonstiff, 

while difficulties like discontinuities were not included. 

Collections of simple realistic problems were proposed as test 

suites – sets of benchmark problems – for evaluating the various 

methodologies and software packages, according to several 

criteria for accuracy and computational complexity [6], [8], [9], 

[11], [12], [13]. Until today, these are constantly being extended 

with new problems along with their solutions to serve as 

reference databases. A few recent examples of problem sets and 

frameworks available for evaluation of ODE solvers can be 

found in [7], [14], [15], [16], [17] and [18]. In addition to these 

general problem sets, several works focused on evaluating and 

comparing existing algorithms for solving specific problems in 

the fields of biology and chemistry [19], combustion chemistry 

[20], atmospheric chemistry [21], and astrochemical kinetics 

[22]. 

A special kind of algorithms and methods were also proposed, 

which were able to detect when the problem is stiff or nonstiff, 

and accordingly switch between families of methods to improve 

their overall performance [7], [23], [24]. Hybrid problems that 
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include both stiff and nonstiff segments are a fertile ground for 

this kind of methods, however they have not been fully exploited 

yet. In general, there are only a few examples concerning ODE 

solving for hybrid systems. Various solvers were studied on a 

nonstiff continuous, a stiff continuous, and a stiff hybrid model 

in [25], while a comparison was conducted for three Matlab ODE 

solvers for a model that changed from nonstiff to stiff, and back 

to nonstiff in [25]. 

In spite of the theoretical results published, the numerous 

software packages developed, and the large number of 

application examples presented already, the ODE solver 

selection problem remains open until today especially in the 

cases of complex hybrid systems that include impacts. 

Additional evaluation methodologies and results for this class of 

systems are welcome in the community, providing insight, 

practical guidelines, and tests with up to date software packages. 

The purpose of this work is to provide basic guidelines 

regarding the numerical solution of dynamical systems with 

impacts. More specifically, we aim to determine which method 

can provide better accuracy and speed of solution when solving 

the respective system of ODEs in a wide parameter space. 

Moreover, we aim to understand and evaluate the role of event 

location functions, [27] – functions built in ODE software 

packages to aid in programming the transition between phases in 

hybrid systems – on the speed and accuracy of the method. 

Despite the earlier preference of the community for 

implementations in Fortran, the Matlab ODE suite – presented in 

[28] and more recently described in [29] – soon became a very 

popular tool with a wide variety of powerful ODE solvers and 

example problem sets [18], [30]. Based on this, and also on the 

fact that Matlab has become ubiquitous in engineering studies, 

we chose it as the framework for our analysis. 

To obtain answers to the above questions a system comprised 

of a vertically hopping monopod, and a nonlinear Hunt-Crossley 

ground model was selected. To ensure the generality of the 

results, the system was brought in a dimensionless form with the 

values of the four dimensionless parameters chosen to belong in 

a range characterizing existing monopods. Using a numerical 

stiffness criterion, we investigated the effect of changing each 

dimensionless parameter at a time on the stiffness of the system. 

Furthermore, each of the above cases was solved at three 

different levels of absolute and relative error tolerance (1e-3, 1e-

6, 1e-9), to determine which of the seven ODE solvers can cope 

better in each tolerance level. The results produced by the seven 

solvers, in the three error tolerance levels, for a range of 

numerical stiffness depending on the four dimensionless 

parameters, with and without the use of event functions for phase 

transition, were evaluated for speed and accuracy. The solvers 

that performed better for each criterion in each case were 

rewarded by a point reward system. Based on the point results, 

one can choose the desired error tolerance, decide whether to use 

the built-in event location functions, and finally narrow down the 

solver candidates to one or two that are appropriate for a specific 

problem. 

This work also introduces a new benchmark problem for 

impacts including a continuous realistic ground model to the 

existing IVP problem sets, an evaluation method comprised of 

three ranking criteria, and an investigation on the effects of event 

location functions on simulations of hybrid dynamical systems 

with impacts. While most works in the field concentrate on 

solver comparisons for multiple problems of different nature, 

this study focuses on a particular problem – considered 

representative of a class of problems that include repeated 

impacts – and spans a large percentage of its parameter space, 

based on realistic values taken from existing mechanical 

systems. 

It is expected that the general conclusions and suggestions of 

this paper will be useful not only for the presented class of 

systems, but also for systems with compliant mechanisms in 

which repeated impacts occur. 

 

II. HYBRID SYSTEM DYNAMICS 

A. System description and dynamics 

The physical system described in this section is considered 

hybrid, as its differential equations change accordingly to the 

succeeding phases that are presented during its movement; 

phases with and without impact. The system consists of a simple 

unactuated springy monopod that hops vertically, on a nonlinear 

compliant ground, under the influence of gravity, see Figure 1. 

The hopper has toe mass 1m , body mass 2m , free length 0l , and 

leg stiffness k . Hopping is characterized by the succession of 

two discrete phases: the stance phase occurring when the 

monopod interacts with the ground, and the flight phase that 

takes place from the instant that the monopod takes-off from the 

ground until right before it touches the ground again. As long as 

the monopod stays in contact with the ground, a normal 

impulsive contact force gF  is applied from the ground to the toe, 

as the result of an infinitesimal displacement of the ground at the 

contact point, see Figure 1. 

 
Figure 1. Two snapshots of a vertically hopping monopod 

at different phases. (A) flight phase, and (B) stance phase. 

Among the various impact models proposed in literature [31], 

[42] the continuous, non-adhesive Hunt-Crossley model was 

selected for describing the forces exerted from the ground to the 

toe of the hopper during impact [43], 

 
n n

g g go g g g go gF k y y b y y y      (1) 

where gk  is the ground stiffness, gb  is its damping, 1.5n   is 

the Hertz coefficient for non-adhesive contact, with gy  being the 

vertical displacement from the ground level goy , and gy  the 

velocity of the ground contact point. The ground level is set at: 
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 0goy    (2) 

The equations of motion (EoM) of the monopod hopper are 

derived using the Euler-Lagrange method, with generalized 

coordinates the vertical displacements 1 2,y y  of the toe mass 1m  

and the body mass 2m  respectively. They are presented in a 

unified form for both the flight and the stance phase, as: 

  1 1 0 1 2 1 gm y k l y y m g iF       (3) 

  2 2 0 1 2 2 0m y k l y y m g         (4) 

where g  is the acceleration of gravity and i  is a variable 

responsible for the transition between phases, so that: 

 1

1

0 0

1 0

for y
i

for y


 


   (5) 

Also, during the stance phase, the displacement and velocity of 

the toe and of the ground contact point coincide so that: 

 1 gy y    (6) 

 1 gy y    (7) 

Taking into account equations (1), (2), (6), and (7), the EoM can 

be rewritten with respect to the state variables as: 

 

 1.5 0.5

1 1 1 1 1 1 2 1 0 0g gm y ib y y k ik y y ky m g kl         (8) 

 2 2 1 2 2 0 0m y ky ky m g kl        (9) 

 

B. Dimensionless EoM  

To reduce the number of free parameters and provide 

generality, the mathematical description of the hopping 

monopod is written in a dimensionless form using the pi theorem 

of Buckingham [32]. The dimensionless variables of the system 

are: 

 * 1

1

0

y
y

l
    (10) 

 * 2

2

0

y
y

l
    (11) 

 * t
t

s
   (12) 

where the * as a superscript denotes a dimensionless variable. 

The time parameter s  is chosen to be equal to the period of the 

two mass free oscillation during the flight phase: 

 1 2

1 2

2
( )

m m
s

m m k



   (13) 

Also, from equations (10), (11), and (12), the dimensionless 

vertical velocities and accelerations of masses 1 2,m m  are derived 

as: 

 *

1 1

0

s
y y

l
    (14) 

 *

2 2

0

s
y y

l
    (15) 

 
2

*

1 1

0

s
y y

l
    (16) 

 
2

*

2 2

0

s
y y

l
    (17) 

Replacing the dimensional variables in equations (8), (9) with 

the dimensionless ones of (10)-(12) and (14)-(17) and after some 

algebraic manipulation, the dimensionless description of the 

monopod hopper on compliant ground is: 

 
  

   

1.5 0.5
* * * * 2 * * * *

1 1 1 1 1 1

2 * * * 2 *

1 2 1

4 1

4 4 0

y ib y y m ik y y

m y f m



 

    

      

  (18) 

* * * * * * *

2 1 1 1 2 1 0y m y m y f m        (19) 

where 
*b  is the dimensionless damping ratio, 

*

1m  is the 

dimensionless toe mass, 
*k  is the dimensionless ground stiffness 

and 
*f  is the dimensionless force, given by: 

 
 

0.51.5

0 1 2

1 1 2

2
*

gb l m m
b

m m m k

  
    

   (20) 

 
 

2

* 1

1

1 2

4 m
m

m m





   (21) 

 
0.5

0* gk l
k

k
    (22) 

 
 

2

1 2

1 2 0

4
*

m m g
f

m m kl





   (23) 

 

C. Dimensionless parameter space and numerical stiffness 

The performance of various numerical integration methods is 

to be determined under different impact conditions. These 

depend on the initial conditions for (18), and (19), and on the 

values of the parameters (20)-(23). To determine the 

dimensionless parameter space, plausible parameter values were 

gathered from existing monopods [33], [34], [35], [36], and Hunt 

- Crossley ground models [37]. Using (20)-(23), the range for the 

values of the four dimensionless parameters were derived to be:  

  * 550, 38000b     (24) 

 *

1 [0.8, 20]m     (25) 

 * [1, 480]k     (26) 

  * 0.01, 0.3f     (27) 

The numerical stiffness of the system of differential equations 

(18), (19) is a function of the above four dimensionless 

parameters. It is well known that to solve a system of linear 

differential equations accurately, the integration step size must 

be much smaller with respect to the period of the fastest 

phenomenon. The faster a phenomenon is, the larger the real part 

of the corresponding eigenvalue is. For a system with both very 

fast and very slow phenomena, a small integration step is needed, 

while the time of integration is very long, resulting in a 

numerically stiff system. Many definitions and criteria have been 

formulated over the years for numerical stiffness [25], [38]. In 

this work, the stiffness ratio (SR) is used as a representative 

stiffness criterion defined as: 
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  
  

max Re

min Re

j
j

j
j

SR



    (28) 

where j  is a system eigenvalue. The higher SR  ( 1SR  ) is, 

the stiffer the system of differential equations becomes. 

To determine the stiffness of the differential equations (18), 

(19) with the dimensionless parameters in the range (24)-(27), 

the system is linearized in the vicinity of the equilibrium point 

given by: 

 

2 2

2 * 2 * *3 3

* * * * *

1 1 1

4 4
- 0 - - 1 0

T

f f f

k m k m m

 
 
         
   

  

*

e
q  (29) 

The characteristic equation of the system is found for the flight 

phase  0i  : 

  2 2 24 0       (30) 

and for the linearized impact phase  1i  : 

 

     

1

2 * * 2 * 3
4 3 2 2 * * 2

1* * * *

1 1

1 22 * *
2 * * * 2 *3 3

1 1*

4 4
4 1.5 4

4
1.5 4 4 0

b f f
m k

k m k m

b f
f k m m

k

 
    


  

 
        
 

  

   

 

 (31) 

Since time was made dimensionless using the period of the free 

oscillation during the flight phase s , the eigenvalues during 

flight are independent of the dimensionless parameters, and 

therefore are omitted from the stiffness analysis that follows. 

Focusing on (31), first a nominal dimensionless parameter set 

is chosen:
* 1951,b 

*

1 1.88,m  * 22.8k  and
* 0.051f  . The 

eigenvalues 1 2 4, ,...,    are computed starting from the nominal 

set, and continuing by changing one dimensionless parameter 

value at a time, for three different values in the intervals (24)-

(27). For all these sets, we compute the corresponding numerical 

stiffness using SR as defined in (28). 

 

III. ODE SOLVERS AND THEIR PARAMETERS 

Given the dimensionless EoM (18)-(19), the desired parameter 

set, and the desired initial conditions, the ODE solvers available 

in Matlab are employed to yield the solution. The solvers and the 

integration algorithm that they implement are presented in Table 

1, or more extensively in [28]. 

The performance of each solver depends on the selected error 

tolerance, and in turn, this tolerance determines the step size of 

the integrator. If solutions of large magnitudes are expected, then 

the relative error tolerance must be set. 

On the other hand, if solutions in the vicinity of zero are 

expected, then the absolute error tolerance must be determined, 

since then the relative error tolerance tends to infinity. If the 

solution of a problem is expected both in the vicinity and away 

from zero, as in the case of the hopping robot toe and main body 

trajectories, then both error tolerances must be set. To study the 

effect of error tolerance in the ODE solver performance, the 

system of differential equations is solved in three different levels 

of error tolerance, (1e-3), (1e-6) and (1e-9). The error tolerance 

level in the Matlab ODE suite is set with ‘RelTol’ and ‘AbsTol’ 

parameters. 

 

Table 1. Description of solvers provided by the ODE 

Matlab suite. 

ODE 

solver 

Algorithm 

Implemented 

Recommended 

for/comments 

ode23 Runge - Kutta 23 Nonstiff problems 

ode45 Runge - Kutta 45 Nonstiff problems 

ode113 Adams - Bashforth - 

Moulton 
Nonstiff problems 

ode15s Numerical 

differentiation 

formulas 

Stiff problems. Quasi 

constant step size. 

ode23s Rosenbrock Stiff problems. Second 

order. 

ode23t Trapezoidal rule Moderately stiff 

problems. 

 

ode23tb 

 

Two stage Runge - 

Kutta 

Stiff problems. 

First stage, trapezoidal 

rule. 

Second stage, second 

order backward 

differentiation formula. 

 

During impacts, there is a fast transition from one set of EoM 

to another. During numerical integration, the phase transition 

strategy employed to describe the physics of the problem, is 

conjectured also to affect the performance of the ODE solver. 

The differential equations describing the hopping monopod 

change when the toe contacts or leaves the ground. This 

transition can be implemented either with an “if…else…end” 

statement as part of the EoM, or with the Matlab event location 

function, as described in [39]. As the system of (18)-(19) is 

numerically solved, the first transition strategy checks in every 

time step the value of 
*

1y ; if it is positive, then i  takes the value 

0, else it takes the value 0. With this strategy, the toe may 

penetrate slightly the ground before the ground force is exerted, 

depending on the size of the time step. With the second transition 

strategy, the EoM are solved in loops. Every time an event is 

detected, here when 
*

1 0y  ,  the numerical integration stops, and 

the solutions of the system are accurately found for 
*

1 0y  . 

Changing appropriately the EoM depending on the phase of the 

motion, and using as initial conditions the solution of the system 

at 
*

1 0y  , the numerical integration is reinitiated until the next 

event detection. The procedure continues until the differential 

equations describing the hybrid system are solved in the desired 

time interval. With the event transition strategy, the ground 

forces are exerted on the toe exactly right after 
*

1 0y  , however 

by constantly restarting the numerical solver the accuracy of the 

solution deteriorates.  In the case of impacts, where phase 

transitions exist, it is important to determine how the use of event 

functions affects the ODE solver performance, in comparison to 

the simple “if…else…end” statement transition strategy. 
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IV. PERFORMANCE CRITERIA 

To better understand the choice of performance criteria, first 

the nature of the response is described, see Figure 2. The toe 

mass 1m  is in general much smaller than the monopod body mass 

2m , therefore it oscillates more intensely in both the flight and 

stance phases. As a result, during the numerical integration of 

(18)-(19), it is expected that errors in the toe displacement 

numerical solution with respect to the true solution, are going to 

appear sooner and be larger than those for the main body. This is 

confirmed by comparing the top (body) and bottom (toe) 

responses in Figure 2. 

Since the mathematical description of the hybrid system 

during stance is nonlinear, no analytical solution exists to serve 

as a benchmark. That is evident even in one degree of freedom 

systems using the Hunt - Crossley impact formulation when 

gravitational forces are included [44]. Therefore, a reference 

solution is needed for benchmarking. This reference is obtained 

as the average of the solutions provided by solvers ode23, ode45, 

ode113 and ode15s, in a very fine error tolerance (1e-12). These 

solvers were used for the reference solution, because they can 

provide the desired error tolerance (1e-12) solution in reasonable 

time. As discussed earlier, the dimensionless toe displacement 
*

1,refy  is of critical importance compared to that of the main body. 

Therefore, the accuracy of each solver is evaluated using 
*

1,refy  

only. 

 
Figure 2. Response of hopping monopod by various solvers, 

for error tolerance (1e-3) and transition by “if…else…end” 

statement. 

In evaluating an ODE solver’s performance, an important 

criterion is the deviation of the solution compared to the 

reference one. Therefore, a suitable criterion is the divergence 

time (DT) that corresponds to the first dimensionless integration 

time at which the normalized error of 
*

1,solvery  from the reference 

solution 
*

1,refy  becomes significant, or: 

 

* *

1, 1,

*

1,

solver ref

ref

y y

y



    (32) 

where ε is chosen to be equal to 0.05 for error tolerance (1e-3), 

and 0.01 for (1e-6) and (1e-9), also see Figure 3. This divergence 

is expected to occur during the flight phase, where no damping 

exists. Since the error is in relative form, (32) is evaluated only 

away enough from zero, i.e. for | | 0.05refy  . The larger DT for 

some solution 
*

1,solvery  is, the more accurate the solution is, see 

Figure 3 and Figure 4. 

 
Figure 3. Absolute error between the reference toe 

displacement and the toe displacement provided by an ODE 

solver. 

 
Figure 4. Correlation of absolute and relative error 

from reference with DT, and IAE criteria.  

 
While the solution of an ODE solver may become inaccurate 

during the flight phase considering (32), during the stance phase 

damping exists that reduces the deviation from the reference. For 

this reason, a criterion representative for both phases, and valid 

in the entire dimensionless time integration interval, is 

introduced. This criterion is the Integral of the Absolute Error 

(IAE) of the solution from the reference calculated using the 

trapezoidal method: 
*

*
0

1

0

1

* * * *

1, , 1, , 1

( )
2

, , 0,...,

f
Nt

N i
t

m

i solver m ref m m m

h
IAE e dt e e h e

e y y h t t m N







   

    


  (33) 

and shown in Figure 4. The smaller the IAE is for the 

dimensionless time interval of integration 
* *

0[ , ]ft t , the greater the 

overall accuracy of the ODE solver is. 
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Finally, to evaluate the performance of ODE solvers with 

respect to the time needed for obtaining a solution, the Solution 

Duration (SD) criterion is introduced, defined as the time it takes 

a solver to integrate the EoM in real time. Its value is measured 

using the tic and toc Matlab commands; the tic starts a timer right 

before initiating the solution and the toc records the elapsed real 

time after the solution becomes available. The fastest a solver, 

the smaller is the value of its SD. 

  

V. RESULTS 

The system of differential equations (18)-(19) is solved in the 

time interval  * *

0 , 0, 50ft t     as an IVP in the explicit form: 

  * ,f t* *
q q    (34) 

where 
* * * *

1 1 2 2, , ,
T

y y y y   
*

q . The initial toe height is taken as 

half the spring free length, the body initial height as one and a 

half free lengths, while the hopper starts from rest. Then, the 

initial conditions in the vector form are the following: 

  0.5, 0, 1.5, 0*

0
q    (35) 

The system (34) is solved first for the nominal dimensionless 

parameter set 
* 1951b  , 

*

1 1.88m  ,
* 22.8k  ,

* 0.051f  , 

shown in bold in Table 2. The nominal set of parameters was 

chosen close to those presented in [37]. After the nominal 

parameters are set, (34) is solved again changing a parameter at 

a time, choosing from three equally spaced points in the intervals 

(24)-(27), resulting in twelve more combinations. A total of 

thirteen dimensionless parameter sets shown in Table 2 result in 

different impact conditions (i.e. oscillation frequency, impact 

damping, clearance) and numerical stiffnesses as shown by the 

value of SR. 

Table 2. Stiffness ratio ( )SR  values for a range of 

dimensionless parameter values. 

# b* m1
* k* f* SR 

1 1951 20.00 22.8 0.051 35 

2 1951 10.40 22.8 0.051 172 

3 1951 1.88 22.8 0.010 1328 

4 550 1.88 22.8 0.051 3564 

5 1951 1.88 22.8 0.051 7010 

6 1951 1.88 22.8 0.155 17805 

7 1951 0.80 22.8 0.051 31044 

8 1951 1.88 22.8 0.300 36144 

9 19275 1.88 22.8 0.051 50072 

10 1951 1.88 240.5 0.051 72942 

11 38000 1.88 22.8 0.051 176750 

12 1951 1.88 480.0 0.051 181160 

13 1951 1.88 1.0 0.051 234440 

 

The system of equations (34), for most of the thirteen 

dimensionless parameter sets, seems to be fairly stiff during the 

stance phase, as for most cases in Table 2, the SR is of the order 

of 
3 510 10 . At this point note that the flight phase eigenvalues 

are not affected by the dimensionless parameters, i.e. hybrid 

systems, represent a class of systems that are stiff during the 

stance phase and nonstiff during the flight phase. For such a class 

of systems, which type of solvers (stiff or nonstiff) performs 

better is an open question.  

The method described here and the obtained results, provide 

interesting answers to this question. To this end, the seven ODE 

solvers in Table 1 are used to provide solutions, in three error 

tolerance levels (1e-3), (1e-6), (1e-9), and for two transition 

strategies, one with a simple “if…else…end” statement and the 

other using Matlab’s event function. In this way, 14 experiments 

are conducted for each of the three tolerance levels and for each 

of the 13 parameter sets, resulting in a total of 546 experiments. 

The solutions are evaluated in speed and accuracy using the 

SD, DT and IAE criteria. The best performance of all solvers, in 

all parameter sets and transition strategies is awarded with 10 

points and the worst with 1 point. Intermediate performances are 

rewarded with points obtained using a linear interpolation in the 

interval [1, 10]. As a result for every transition strategy, tolerance 

level and criterion, if a solver has the worst performance for all 

of 13 parameter sets, it will accumulate the total of 1x13 points. 

On the other hand, if it has the best performance for all of 13 

parameter sets, it will accumulate 10x13=130 points.  With this 

point system, only results of the same error tolerance are 

compared. The total points each ODE solver obtains for every 

criterion and error tolerance level, and for all thirteen 

dimensionless parameter sets, were collected and displayed in 

two tables, one for the “if…else…end” transition strategy (Table 

3) and the other for the event function transition strategy (Table 

4). The three solvers that accumulated most points for every 

tolerance and criterion, were ranked 1 to 3, with 1 being the best. 

 

Table 3. ODE solver point ranking with respect to SD, DT, 

IAE for various tolerances and phase transition by an 

“if…else…end” statement. 

Error Tolerance (1e-3) 

 

Criteria 

 

Solvers 

SD DT IAE 

Points Rank Points Rank Points Rank 

ode15s 102.77 - 42.30 - 102.31 - 

ode45 123.96 2 75.90 1 121.71 1 

ode23s 96.16 - 46.49 - 115.66 - 

ode113 119.37 3 55.94 2 116.15 3 

ode23tb 106.99 - 47.91 3 117.59 2 

ode23t 105.41 - 47.00 - 111.62 - 

ode23 125.44 1 43.84 - 115.04 - 

 

Error Tolerance (1e-6) 

 

Criteria 

 

Solvers 

SD DT IAE 

Points Rank Points Rank Points Rank 

ode15s 120.84 - 99.63 1 122.79 2 

ode45 127.78 1 36.46 3 120.60 - 

ode23s 84.16 - 18.90 - 119.39 - 

ode113 127.07 2 27.50 - 122.66 3 

ode23tb 106.98 - 18.94 - 121.07 - 

ode23t 104.77 - 79.06 2 119.96 - 

ode23 124.22 3 15.78 - 122.92 1 
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Error Tolerance (1e-9) 

 

Criteria 

 

Solvers 

SD DT IAE 

Points Rank Points Rank Points Rank 

ode15s 127.21 3 15.02 - 113.75 - 

ode45 128.99 2 87.01 1 127.55 1 

ode23s 83.44 - 36.94 2 119.54 3 

ode113 129.19 1 28.02 3 121.88 2 

ode23tb 109.19 - 15.26 - 102.74 - 

ode23t 107.39 - 19.97 - 116.67 - 

ode23 123.37 - 23.61 - 118.61 - 

Table 4. ODE solver point ranking with respect to SD, DT, 

IAE for various tolerances and phase transition by an event 

function. 

Error Tolerance (1e-3) 

 

Criteria 

 

Solvers 

SD DT IAE 

Points Rank Points Rank Points Rank 

ode15s 87.50 - 45.85 - 100.76 - 

ode45 112.91 2 74.44 1 122.23 1 

ode23s 85.26 - 46.31 - 120.02 2 

ode113 103.12 3 67.55 2 119.85 3 

ode23tb 98.19 - 47.87 3 118.86 - 

ode23t 93.09 - 45.52 - 106.04 - 

ode23 115.76 1 43.49 - 119.84 - 

 

Error Tolerance (1e-6) 

 

Criteria 

 

Solvers 

SD DT IAE 

Points Rank Points Rank Points Rank 

ode15s 116.37 - 98.45 1 123.16 3 

ode45 125.51 1 53.29 3 124.23 2 

ode23s 76.14 - 18.90 - 119.61 - 

ode113 123.70 2 27.50 - 128.16 1 

ode23tb 100.29 - 18.85 - 120.84 - 

ode23t 95.42 - 76.44 2 120.07 - 

ode23 119.12 3 15.83 - 122.61 - 

 

Error Tolerance (1e-9) 

 

Criteria 

 

Solvers 

SD DT IAE 

Points Rank Points Rank Points Rank 

ode15s 126.23 3 15.02 - 110.67 - 

ode45 128.39 2 112.28 1 128.77 1 

ode23s 75.89 - 36.91 3 119.41 3 

ode113 128.96 1 44.91 2 126.56 2 

ode23tb 102.33 - 15.26 - 102.23 - 

ode23t 98.66 - 19.97 - 116.53 - 

ode23 119.39 - 23.58 - 118.65 - 

 

VI. DISCUSSION 

From the results of Table 3 and Table 4, general guidelines can 

be extracted for application to the class of hybrid problems with 

short-duration impacts and long-duration flight phases, as that of 

a hopping monopod. 

Looking at Table 3 and Table 4, to our surprise, ode45 and 

ode113 were among the best three performing ODE solvers most 

of the time. The ode15s performed distinctively well mainly for 

error tolerance (1e-6), while ode23s showed good results two 

times using the “if…else…end” transition strategy, and three 

times for an event function based transition strategy. The ode23 

showed that could provide fast solutions for error tolerance (1e-

3) to (1e-6), but was in most cases overruled in accuracy by other 

solvers. The ode23tb mainly fared well for crude error tolerance 

(1e-3), while ode23t only once per table with respect to the DT 

criterion. Therefore, although in many simulations of legged 

robots the preference is for stiff solvers to address hybrid 

problems with impacts, such as the ode15s or the ode23s, [40], 

[41], this preference does not seem to be justified based on the 

obtained results.  

Comparing the results from Tables 3 and 4, in almost all cases 

using the built-in event function, the SD of all solvers 

deteriorated. For instance, for error tolerance (1e-3) ode15s 

scored 102.77 points for SD in the “if…else…end” case (Table 

3), while it only scored 87.50 points for SD in the event function 

case, for the same error tolerance (Table 4). The same 

observation applies for the performance of all solvers in SD, 

comparing results for the same error tolerance, and for both 

phase transition strategies. The performance of ode45 and 

ode113 with respect to the DT and IAE criteria was a little higher 

in comparison to the “if…else…end” case; the performance of 

all other solvers was mixed with respect to these criteria. 

Based on the above observations, the guideline that emerges is 

that if someone is simply interested in obtaining the response of 

a similar hybrid system with impacts, the ode45 or the ode113 

should be tried first, with the ode15s and ode23s to be considered 

next. In the case that the event function is considered for phase 

transition, it is pointed out that the performance of the ODE 

solver used will deteriorate in solution speed, without necessarily 

improving in accuracy. 

Using Table 3 and Table 4, case-specific guidelines can be also 

proposed. For instance, assume one is interested in obtaining the 

response of a hybrid system with impacts, with phase transition 

using an “if…else…end” statement, and error tolerance (1e-6). 

Assume also that SD is twice as important as IAE, while DT is 

unimportant. In such a case, one may use the results provided in 

Table 3 under the legend Error tolerance (1e-6) to calculate a 

weighted sum of total points totp  for every solver, defined by: 

 tot SD SD DT DT IAE IAEp w p w p w p      (36) 

where SDp , DTp  and IAEp are the points obtained and SDw , DTw  

and IAEw
 

the weighting factors of the ODE solver in the 

corresponding to the subscript criteria. For the example case 

study, the weighting factors are assigned values 2SDw  , 

0DTw 
 
and 1IAEw  . Using (36), the calculated weighted sum 

is shown in Table 5. This table also indicates that the best ODE 

solver for this case is ode113, a solver recommended for nonstiff 

problems. 
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Table 5. Ranking of ODE solvers, for error tolerance (1e-

6), transition by an “if…else…end” statement, and 

weighting factors 2SDw  , 0DTw  , and 1IAEw  . 

Solver totp  Rank 

ode15s 364.47 - 

ode45 376.16 2 

ode23s 287.71 - 

ode113 376.80 1 

ode23tb 335.03 - 

ode23t 329.50 - 

ode23 371.36 3 

 

VII. CONCLUSIONS 

Hybrid systems represent a class of problems that cycle 

between phases when the system EoM is stiff (interaction with 

the ground) and phases when it is nonstiff (flight phases). As the 

question of selecting the best solver for such a system was open, 

in this paper a method was proposed to provide guidelines for 

selecting an ODE solver and its parameters for such systems. A 

monopod hopper interacting compliantly with the ground was 

introduced as a new benchmark problem, and used to compare 

the solvers available in the widely used Matlab ODE Suite, 

according to three criteria for solution speed, and accuracy. To 

provide generality to the results, the mathematical description of 

the model was brought to a dimensionless form, and its 

dimensionless parameters were varied in a range taken from 

existing systems and corresponding to different levels of 

numerical stiffness. The effects of error tolerance and phase 

transition strategy were also studied. Finally, guidelines were 

provided, for selecting the appropriate ODE solver, both overall 

and case-specific. Interestingly, the best solver for a realistic case 

turned out to be a solver recommended for numerically nonstiff 

problems. 
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