

E. Papadopoulos CND-16-1600 1

Spyridon Dallas
spyro.d.mechs@gmail.com

Konstantinos Machairas
kmach@central.ntua.gr

Evangelos Papadopoulos
egpapado@central.ntua.gr

ASME Member

Department of Mechanical Engineering

National Technical University of Athens

9 Heroon Polytechniou Str.

15780 Athens, Greece

I. INTRODUCTION

In the simulation phase of a mechanical system, a

representative model of the system is chosen, the dynamical

equations describing its behavior are derived as a system of

Ordinary Differential Equations (ODEs), and finally an ODE

solver is selected from a collection of algorithms and packages,

to solve the equations. The large number of methodologies

available for solving such an Initial Value Problem (IVP) can be

explained by the heterogeneity of the various realistic dynamical

problems, and the great difficulty to be all solved numerically by

a single algorithm. Notably, mechanical systems that experience

repeated impacts, such as legged robots [1] and on-orbit

manipulators [2], can present a very rich repertoire of behaviors,

making the selection of the proper solver a tedious and

challenging task. What makes a good selection is the adequately

high speed of the solver for a given accuracy, as well as the small

deviation from the true response – usually not known in

analytical form.

In this work, we focus on mechanical systems with impacts

and especially on hopping single-legged robots, which we

consider as simple yet representative for a whole class of systems

that include compliant elements in their structures and

experience repeated impulsive impacts. Recently, the robotics

community has been demonstrating advanced examples of

efficient, agile and intelligent legged robots, followed by a large

increase in related research output, including theoretical and

experimental results accompanied mostly by simulation

experiments. However, the criteria used for selecting an ODE

solver in the simulations are obscure in most of the works, while

even for problems of similar structure, very different solvers are

chosen. For instance, focusing on legged robotics simulations,

one can find works employing solvers recommended for stiff

problems – Matlab ode23s in [3] – and also for nonstiff problems

– Matlab ode113 in [4] – for solving similar problems. To the

authors’ knowledge, the community lacks a set of guidelines to

evaluate, compare and choose the proper solver for a given

problem in this class. The proper choice of a solver is time

consuming, since one has to first find the solvers that converge

to a solution, and then choose the most effective one. Taking into

account demanding procedures like fixed point searching in

legged robots [5] that can take hours or days, choosing the

appropriate solver, and solving a problem efficiently with the

desired level of accuracy is essential in hard problems such as

those involving mechanical impacts.

During the last decades, important theoretical works in the

field of numerical analysis showed how different methodologies

for solving ODE systems can be implemented into algorithms for

solving different kinds of problems. Detailed literature reviews

are included in [6] and [7]. Seminal works early set the basis for

the systematic evaluation of ODE solvers, while the numerous

references found therein reveal the long history of attempts been

made in the field [8], [9], and [10]. The initial analyses and

results distinguished problems mainly into stiff and nonstiff,

while difficulties like discontinuities were not included.

Collections of simple realistic problems were proposed as test

suites – sets of benchmark problems – for evaluating the various

methodologies and software packages, according to several

criteria for accuracy and computational complexity [6], [8], [9],

[11], [12], [13]. Until today, these are constantly being extended

with new problems along with their solutions to serve as

reference databases. A few recent examples of problem sets and

frameworks available for evaluation of ODE solvers can be

found in [7], [14], [15], [16], [17] and [18]. In addition to these

general problem sets, several works focused on evaluating and

comparing existing algorithms for solving specific problems in

the fields of biology and chemistry [19], combustion chemistry

[20], atmospheric chemistry [21], and astrochemical kinetics

[22].

A special kind of algorithms and methods were also proposed,

which were able to detect when the problem is stiff or nonstiff,

and accordingly switch between families of methods to improve

their overall performance [7], [23], [24]. Hybrid problems that

A Comparison of ODE Solvers for

Dynamical Systems with Impacts
In this paper, a method is developed that results in guidelines for selecting the best

Ordinary Differential Equation (ODE) solver and its parameters, for a class of

nonlinear hybrid system were impacts are present. A monopod interacting compliantly

with the ground is introduced as a new benchmark problem, and is used to compare

the various solvers available in the widely used Matlab ODE Suite. To provide result

generality, the mathematical description of the hybrid system is brought to a

dimensionless form, and its dimensionless parameters are selected in a range taken

from existing systems and corresponding to different levels of numerical stiffness. The

effect of error tolerance and phase transition strategy is taken into account. The

obtained system responses are evaluated using solution speed and accuracy criteria.

It is shown that hybrid systems represent a class of problems that cycle between phases

in which the system of the Equations of Motion (EOM) is stiff (interaction with the

ground), and phases in which it is not (flight phases); for such systems, the appropriate

type of solver was an open question. Based on this evaluation, both general and case-

specific guidelines are provided for selecting the most appropriate ODE solver.

Interestingly, the best solver for a realistic test case turned out to be a solver

recommended for numerically nonstiff ODE problems.

E. Papadopoulos CND-16-1600 2

include both stiff and nonstiff segments are a fertile ground for

this kind of methods, however they have not been fully exploited

yet. In general, there are only a few examples concerning ODE

solving for hybrid systems. Various solvers were studied on a

nonstiff continuous, a stiff continuous, and a stiff hybrid model

in [25], while a comparison was conducted for three Matlab ODE

solvers for a model that changed from nonstiff to stiff, and back

to nonstiff in [25].

In spite of the theoretical results published, the numerous

software packages developed, and the large number of

application examples presented already, the ODE solver

selection problem remains open until today especially in the

cases of complex hybrid systems that include impacts.

Additional evaluation methodologies and results for this class of

systems are welcome in the community, providing insight,

practical guidelines, and tests with up to date software packages.

The purpose of this work is to provide basic guidelines

regarding the numerical solution of dynamical systems with

impacts. More specifically, we aim to determine which method

can provide better accuracy and speed of solution when solving

the respective system of ODEs in a wide parameter space.

Moreover, we aim to understand and evaluate the role of event

location functions, [27] – functions built in ODE software

packages to aid in programming the transition between phases in

hybrid systems – on the speed and accuracy of the method.

Despite the earlier preference of the community for

implementations in Fortran, the Matlab ODE suite – presented in

[28] and more recently described in [29] – soon became a very

popular tool with a wide variety of powerful ODE solvers and

example problem sets [18], [30]. Based on this, and also on the

fact that Matlab has become ubiquitous in engineering studies,

we chose it as the framework for our analysis.

To obtain answers to the above questions a system comprised

of a vertically hopping monopod, and a nonlinear Hunt-Crossley

ground model was selected. To ensure the generality of the

results, the system was brought in a dimensionless form with the

values of the four dimensionless parameters chosen to belong in

a range characterizing existing monopods. Using a numerical

stiffness criterion, we investigated the effect of changing each

dimensionless parameter at a time on the stiffness of the system.

Furthermore, each of the above cases was solved at three

different levels of absolute and relative error tolerance (1e-3, 1e-

6, 1e-9), to determine which of the seven ODE solvers can cope

better in each tolerance level. The results produced by the seven

solvers, in the three error tolerance levels, for a range of

numerical stiffness depending on the four dimensionless

parameters, with and without the use of event functions for phase

transition, were evaluated for speed and accuracy. The solvers

that performed better for each criterion in each case were

rewarded by a point reward system. Based on the point results,

one can choose the desired error tolerance, decide whether to use

the built-in event location functions, and finally narrow down the

solver candidates to one or two that are appropriate for a specific

problem.

This work also introduces a new benchmark problem for

impacts including a continuous realistic ground model to the

existing IVP problem sets, an evaluation method comprised of

three ranking criteria, and an investigation on the effects of event

location functions on simulations of hybrid dynamical systems

with impacts. While most works in the field concentrate on

solver comparisons for multiple problems of different nature,

this study focuses on a particular problem – considered

representative of a class of problems that include repeated

impacts – and spans a large percentage of its parameter space,

based on realistic values taken from existing mechanical

systems.

It is expected that the general conclusions and suggestions of

this paper will be useful not only for the presented class of

systems, but also for systems with compliant mechanisms in

which repeated impacts occur.

II. HYBRID SYSTEM DYNAMICS

A. System description and dynamics

The physical system described in this section is considered

hybrid, as its differential equations change accordingly to the

succeeding phases that are presented during its movement;

phases with and without impact. The system consists of a simple

unactuated springy monopod that hops vertically, on a nonlinear

compliant ground, under the influence of gravity, see Figure 1.

The hopper has toe mass 1m , body mass 2m , free length 0l , and

leg stiffness k . Hopping is characterized by the succession of

two discrete phases: the stance phase occurring when the

monopod interacts with the ground, and the flight phase that

takes place from the instant that the monopod takes-off from the

ground until right before it touches the ground again. As long as

the monopod stays in contact with the ground, a normal

impulsive contact force gF is applied from the ground to the toe,

as the result of an infinitesimal displacement of the ground at the

contact point, see Figure 1.

Figure 1. Two snapshots of a vertically hopping monopod

at different phases. (A) flight phase, and (B) stance phase.

Among the various impact models proposed in literature [31],

[42] the continuous, non-adhesive Hunt-Crossley model was

selected for describing the forces exerted from the ground to the

toe of the hopper during impact [43],

n n

g g go g g g go gF k y y b y y y    (1)

where gk is the ground stiffness, gb is its damping, 1.5n  is

the Hertz coefficient for non-adhesive contact, with gy being the

vertical displacement from the ground level goy , and gy the

velocity of the ground contact point. The ground level is set at:

E. Papadopoulos CND-16-1600 3

 0goy  (2)

The equations of motion (EoM) of the monopod hopper are

derived using the Euler-Lagrange method, with generalized

coordinates the vertical displacements 1 2,y y of the toe mass 1m

and the body mass 2m respectively. They are presented in a

unified form for both the flight and the stance phase, as:

  1 1 0 1 2 1 gm y k l y y m g iF     (3)

  2 2 0 1 2 2 0m y k l y y m g      (4)

where g is the acceleration of gravity and i is a variable

responsible for the transition between phases, so that:

 1

1

0 0

1 0

for y
i

for y


 


 (5)

Also, during the stance phase, the displacement and velocity of

the toe and of the ground contact point coincide so that:

 1 gy y (6)

 1 gy y (7)

Taking into account equations (1), (2), (6), and (7), the EoM can

be rewritten with respect to the state variables as:

 1.5 0.5

1 1 1 1 1 1 2 1 0 0g gm y ib y y k ik y y ky m g kl       (8)

 2 2 1 2 2 0 0m y ky ky m g kl     (9)

B. Dimensionless EoM

To reduce the number of free parameters and provide

generality, the mathematical description of the hopping

monopod is written in a dimensionless form using the pi theorem

of Buckingham [32]. The dimensionless variables of the system

are:

 * 1

1

0

y
y

l
 (10)

 * 2

2

0

y
y

l
 (11)

 * t
t

s
 (12)

where the * as a superscript denotes a dimensionless variable.

The time parameter s is chosen to be equal to the period of the

two mass free oscillation during the flight phase:

 1 2

1 2

2
()

m m
s

m m k



 (13)

Also, from equations (10), (11), and (12), the dimensionless

vertical velocities and accelerations of masses 1 2,m m are derived

as:

 *

1 1

0

s
y y

l
 (14)

 *

2 2

0

s
y y

l
 (15)

2

*

1 1

0

s
y y

l
 (16)

2

*

2 2

0

s
y y

l
 (17)

Replacing the dimensional variables in equations (8), (9) with

the dimensionless ones of (10)-(12) and (14)-(17) and after some

algebraic manipulation, the dimensionless description of the

monopod hopper on compliant ground is:

  

   

1.5 0.5
* * * * 2 * * * *

1 1 1 1 1 1

2 * * * 2 *

1 2 1

4 1

4 4 0

y ib y y m ik y y

m y f m



 

    

      

 (18)

* * * * * * *

2 1 1 1 2 1 0y m y m y f m     (19)

where
*b is the dimensionless damping ratio,

*

1m is the

dimensionless toe mass,
*k is the dimensionless ground stiffness

and
*f is the dimensionless force, given by:

 

0.51.5

0 1 2

1 1 2

2
*

gb l m m
b

m m m k

  
    

 (20)

 

2

* 1

1

1 2

4 m
m

m m





 (21)

0.5

0* gk l
k

k
 (22)

 

2

1 2

1 2 0

4
*

m m g
f

m m kl





 (23)

C. Dimensionless parameter space and numerical stiffness

The performance of various numerical integration methods is

to be determined under different impact conditions. These

depend on the initial conditions for (18), and (19), and on the

values of the parameters (20)-(23). To determine the

dimensionless parameter space, plausible parameter values were

gathered from existing monopods [33], [34], [35], [36], and Hunt

- Crossley ground models [37]. Using (20)-(23), the range for the

values of the four dimensionless parameters were derived to be:

  * 550, 38000b  (24)

 *

1 [0.8, 20]m  (25)

 * [1, 480]k  (26)

  * 0.01, 0.3f  (27)

The numerical stiffness of the system of differential equations

(18), (19) is a function of the above four dimensionless

parameters. It is well known that to solve a system of linear

differential equations accurately, the integration step size must

be much smaller with respect to the period of the fastest

phenomenon. The faster a phenomenon is, the larger the real part

of the corresponding eigenvalue is. For a system with both very

fast and very slow phenomena, a small integration step is needed,

while the time of integration is very long, resulting in a

numerically stiff system. Many definitions and criteria have been

formulated over the years for numerical stiffness [25], [38]. In

this work, the stiffness ratio (SR) is used as a representative

stiffness criterion defined as:

E. Papadopoulos CND-16-1600 4

  
  

max Re

min Re

j
j

j
j

SR



 (28)

where j is a system eigenvalue. The higher SR (1SR ) is,

the stiffer the system of differential equations becomes.

To determine the stiffness of the differential equations (18),

(19) with the dimensionless parameters in the range (24)-(27),

the system is linearized in the vicinity of the equilibrium point

given by:

2 2

2 * 2 * *3 3

* * * * *

1 1 1

4 4
- 0 - - 1 0

T

f f f

k m k m m

 
 
         
   

  

*

e
q (29)

The characteristic equation of the system is found for the flight

phase  0i  :

  2 2 24 0    (30)

and for the linearized impact phase  1i  :

 

     

1

2 * * 2 * 3
4 3 2 2 * * 2

1* * * *

1 1

1 22 * *
2 * * * 2 *3 3

1 1*

4 4
4 1.5 4

4
1.5 4 4 0

b f f
m k

k m k m

b f
f k m m

k

 
    


  

 
        
 

  

   

 (31)

Since time was made dimensionless using the period of the free

oscillation during the flight phase s , the eigenvalues during

flight are independent of the dimensionless parameters, and

therefore are omitted from the stiffness analysis that follows.

Focusing on (31), first a nominal dimensionless parameter set

is chosen:
* 1951,b 

*

1 1.88,m  * 22.8k  and
* 0.051f  . The

eigenvalues 1 2 4, ,...,   are computed starting from the nominal

set, and continuing by changing one dimensionless parameter

value at a time, for three different values in the intervals (24)-

(27). For all these sets, we compute the corresponding numerical

stiffness using SR as defined in (28).

III. ODE SOLVERS AND THEIR PARAMETERS

Given the dimensionless EoM (18)-(19), the desired parameter

set, and the desired initial conditions, the ODE solvers available

in Matlab are employed to yield the solution. The solvers and the

integration algorithm that they implement are presented in Table

1, or more extensively in [28].

The performance of each solver depends on the selected error

tolerance, and in turn, this tolerance determines the step size of

the integrator. If solutions of large magnitudes are expected, then

the relative error tolerance must be set.

On the other hand, if solutions in the vicinity of zero are

expected, then the absolute error tolerance must be determined,

since then the relative error tolerance tends to infinity. If the

solution of a problem is expected both in the vicinity and away

from zero, as in the case of the hopping robot toe and main body

trajectories, then both error tolerances must be set. To study the

effect of error tolerance in the ODE solver performance, the

system of differential equations is solved in three different levels

of error tolerance, (1e-3), (1e-6) and (1e-9). The error tolerance

level in the Matlab ODE suite is set with ‘RelTol’ and ‘AbsTol’

parameters.

Table 1. Description of solvers provided by the ODE

Matlab suite.

ODE

solver

Algorithm

Implemented

Recommended

for/comments

ode23 Runge - Kutta 23 Nonstiff problems

ode45 Runge - Kutta 45 Nonstiff problems

ode113 Adams - Bashforth -

Moulton
Nonstiff problems

ode15s Numerical

differentiation

formulas

Stiff problems. Quasi

constant step size.

ode23s Rosenbrock Stiff problems. Second

order.

ode23t Trapezoidal rule Moderately stiff

problems.

ode23tb

Two stage Runge -

Kutta

Stiff problems.

First stage, trapezoidal

rule.

Second stage, second

order backward

differentiation formula.

During impacts, there is a fast transition from one set of EoM

to another. During numerical integration, the phase transition

strategy employed to describe the physics of the problem, is

conjectured also to affect the performance of the ODE solver.

The differential equations describing the hopping monopod

change when the toe contacts or leaves the ground. This

transition can be implemented either with an “if…else…end”

statement as part of the EoM, or with the Matlab event location

function, as described in [39]. As the system of (18)-(19) is

numerically solved, the first transition strategy checks in every

time step the value of
*

1y ; if it is positive, then i takes the value

0, else it takes the value 0. With this strategy, the toe may

penetrate slightly the ground before the ground force is exerted,

depending on the size of the time step. With the second transition

strategy, the EoM are solved in loops. Every time an event is

detected, here when
*

1 0y  , the numerical integration stops, and

the solutions of the system are accurately found for
*

1 0y  .

Changing appropriately the EoM depending on the phase of the

motion, and using as initial conditions the solution of the system

at
*

1 0y  , the numerical integration is reinitiated until the next

event detection. The procedure continues until the differential

equations describing the hybrid system are solved in the desired

time interval. With the event transition strategy, the ground

forces are exerted on the toe exactly right after
*

1 0y  , however

by constantly restarting the numerical solver the accuracy of the

solution deteriorates. In the case of impacts, where phase

transitions exist, it is important to determine how the use of event

functions affects the ODE solver performance, in comparison to

the simple “if…else…end” statement transition strategy.

E. Papadopoulos CND-16-1600 5

IV. PERFORMANCE CRITERIA

To better understand the choice of performance criteria, first

the nature of the response is described, see Figure 2. The toe

mass 1m is in general much smaller than the monopod body mass

2m , therefore it oscillates more intensely in both the flight and

stance phases. As a result, during the numerical integration of

(18)-(19), it is expected that errors in the toe displacement

numerical solution with respect to the true solution, are going to

appear sooner and be larger than those for the main body. This is

confirmed by comparing the top (body) and bottom (toe)

responses in Figure 2.

Since the mathematical description of the hybrid system

during stance is nonlinear, no analytical solution exists to serve

as a benchmark. That is evident even in one degree of freedom

systems using the Hunt - Crossley impact formulation when

gravitational forces are included [44]. Therefore, a reference

solution is needed for benchmarking. This reference is obtained

as the average of the solutions provided by solvers ode23, ode45,

ode113 and ode15s, in a very fine error tolerance (1e-12). These

solvers were used for the reference solution, because they can

provide the desired error tolerance (1e-12) solution in reasonable

time. As discussed earlier, the dimensionless toe displacement
*

1,refy is of critical importance compared to that of the main body.

Therefore, the accuracy of each solver is evaluated using
*

1,refy

only.

Figure 2. Response of hopping monopod by various solvers,

for error tolerance (1e-3) and transition by “if…else…end”

statement.

In evaluating an ODE solver’s performance, an important

criterion is the deviation of the solution compared to the

reference one. Therefore, a suitable criterion is the divergence

time (DT) that corresponds to the first dimensionless integration

time at which the normalized error of
*

1,solvery from the reference

solution
*

1,refy becomes significant, or:

* *

1, 1,

*

1,

solver ref

ref

y y

y



 (32)

where ε is chosen to be equal to 0.05 for error tolerance (1e-3),

and 0.01 for (1e-6) and (1e-9), also see Figure 3. This divergence

is expected to occur during the flight phase, where no damping

exists. Since the error is in relative form, (32) is evaluated only

away enough from zero, i.e. for | | 0.05refy  . The larger DT for

some solution
*

1,solvery is, the more accurate the solution is, see

Figure 3 and Figure 4.

Figure 3. Absolute error between the reference toe

displacement and the toe displacement provided by an ODE

solver.

Figure 4. Correlation of absolute and relative error

from reference with DT, and IAE criteria.

While the solution of an ODE solver may become inaccurate

during the flight phase considering (32), during the stance phase

damping exists that reduces the deviation from the reference. For

this reason, a criterion representative for both phases, and valid

in the entire dimensionless time integration interval, is

introduced. This criterion is the Integral of the Absolute Error

(IAE) of the solution from the reference calculated using the

trapezoidal method:
*

*
0

1

0

1

* * * *

1, , 1, , 1

()
2

, , 0,...,

f
Nt

N i
t

m

i solver m ref m m m

h
IAE e dt e e h e

e y y h t t m N







   

    


 (33)

and shown in Figure 4. The smaller the IAE is for the

dimensionless time interval of integration
* *

0[,]ft t , the greater the

overall accuracy of the ODE solver is.

E. Papadopoulos CND-16-1600 6

Finally, to evaluate the performance of ODE solvers with

respect to the time needed for obtaining a solution, the Solution

Duration (SD) criterion is introduced, defined as the time it takes

a solver to integrate the EoM in real time. Its value is measured

using the tic and toc Matlab commands; the tic starts a timer right

before initiating the solution and the toc records the elapsed real

time after the solution becomes available. The fastest a solver,

the smaller is the value of its SD.

V. RESULTS

The system of differential equations (18)-(19) is solved in the

time interval  * *

0 , 0, 50ft t    as an IVP in the explicit form:

  * ,f t* *
q q (34)

where
* * * *

1 1 2 2, , ,
T

y y y y   
*

q . The initial toe height is taken as

half the spring free length, the body initial height as one and a

half free lengths, while the hopper starts from rest. Then, the

initial conditions in the vector form are the following:

  0.5, 0, 1.5, 0*

0
q (35)

The system (34) is solved first for the nominal dimensionless

parameter set
* 1951b  ,

*

1 1.88m  ,
* 22.8k  ,

* 0.051f  ,

shown in bold in Table 2. The nominal set of parameters was

chosen close to those presented in [37]. After the nominal

parameters are set, (34) is solved again changing a parameter at

a time, choosing from three equally spaced points in the intervals

(24)-(27), resulting in twelve more combinations. A total of

thirteen dimensionless parameter sets shown in Table 2 result in

different impact conditions (i.e. oscillation frequency, impact

damping, clearance) and numerical stiffnesses as shown by the

value of SR.

Table 2. Stiffness ratio ()SR values for a range of

dimensionless parameter values.

b* m1
* k* f* SR

1 1951 20.00 22.8 0.051 35

2 1951 10.40 22.8 0.051 172

3 1951 1.88 22.8 0.010 1328

4 550 1.88 22.8 0.051 3564

5 1951 1.88 22.8 0.051 7010

6 1951 1.88 22.8 0.155 17805

7 1951 0.80 22.8 0.051 31044

8 1951 1.88 22.8 0.300 36144

9 19275 1.88 22.8 0.051 50072

10 1951 1.88 240.5 0.051 72942

11 38000 1.88 22.8 0.051 176750

12 1951 1.88 480.0 0.051 181160

13 1951 1.88 1.0 0.051 234440

The system of equations (34), for most of the thirteen

dimensionless parameter sets, seems to be fairly stiff during the

stance phase, as for most cases in Table 2, the SR is of the order

of
3 510 10 . At this point note that the flight phase eigenvalues

are not affected by the dimensionless parameters, i.e. hybrid

systems, represent a class of systems that are stiff during the

stance phase and nonstiff during the flight phase. For such a class

of systems, which type of solvers (stiff or nonstiff) performs

better is an open question.

The method described here and the obtained results, provide

interesting answers to this question. To this end, the seven ODE

solvers in Table 1 are used to provide solutions, in three error

tolerance levels (1e-3), (1e-6), (1e-9), and for two transition

strategies, one with a simple “if…else…end” statement and the

other using Matlab’s event function. In this way, 14 experiments

are conducted for each of the three tolerance levels and for each

of the 13 parameter sets, resulting in a total of 546 experiments.

The solutions are evaluated in speed and accuracy using the

SD, DT and IAE criteria. The best performance of all solvers, in

all parameter sets and transition strategies is awarded with 10

points and the worst with 1 point. Intermediate performances are

rewarded with points obtained using a linear interpolation in the

interval [1, 10]. As a result for every transition strategy, tolerance

level and criterion, if a solver has the worst performance for all

of 13 parameter sets, it will accumulate the total of 1x13 points.

On the other hand, if it has the best performance for all of 13

parameter sets, it will accumulate 10x13=130 points. With this

point system, only results of the same error tolerance are

compared. The total points each ODE solver obtains for every

criterion and error tolerance level, and for all thirteen

dimensionless parameter sets, were collected and displayed in

two tables, one for the “if…else…end” transition strategy (Table

3) and the other for the event function transition strategy (Table

4). The three solvers that accumulated most points for every

tolerance and criterion, were ranked 1 to 3, with 1 being the best.

Table 3. ODE solver point ranking with respect to SD, DT,

IAE for various tolerances and phase transition by an

“if…else…end” statement.

Error Tolerance (1e-3)

Criteria

Solvers

SD DT IAE

Points Rank Points Rank Points Rank

ode15s 102.77 - 42.30 - 102.31 -

ode45 123.96 2 75.90 1 121.71 1

ode23s 96.16 - 46.49 - 115.66 -

ode113 119.37 3 55.94 2 116.15 3

ode23tb 106.99 - 47.91 3 117.59 2

ode23t 105.41 - 47.00 - 111.62 -

ode23 125.44 1 43.84 - 115.04 -

Error Tolerance (1e-6)

Criteria

Solvers

SD DT IAE

Points Rank Points Rank Points Rank

ode15s 120.84 - 99.63 1 122.79 2

ode45 127.78 1 36.46 3 120.60 -

ode23s 84.16 - 18.90 - 119.39 -

ode113 127.07 2 27.50 - 122.66 3

ode23tb 106.98 - 18.94 - 121.07 -

ode23t 104.77 - 79.06 2 119.96 -

ode23 124.22 3 15.78 - 122.92 1

E. Papadopoulos CND-16-1600 7

Error Tolerance (1e-9)

Criteria

Solvers

SD DT IAE

Points Rank Points Rank Points Rank

ode15s 127.21 3 15.02 - 113.75 -

ode45 128.99 2 87.01 1 127.55 1

ode23s 83.44 - 36.94 2 119.54 3

ode113 129.19 1 28.02 3 121.88 2

ode23tb 109.19 - 15.26 - 102.74 -

ode23t 107.39 - 19.97 - 116.67 -

ode23 123.37 - 23.61 - 118.61 -

Table 4. ODE solver point ranking with respect to SD, DT,

IAE for various tolerances and phase transition by an event

function.

Error Tolerance (1e-3)

Criteria

Solvers

SD DT IAE

Points Rank Points Rank Points Rank

ode15s 87.50 - 45.85 - 100.76 -

ode45 112.91 2 74.44 1 122.23 1

ode23s 85.26 - 46.31 - 120.02 2

ode113 103.12 3 67.55 2 119.85 3

ode23tb 98.19 - 47.87 3 118.86 -

ode23t 93.09 - 45.52 - 106.04 -

ode23 115.76 1 43.49 - 119.84 -

Error Tolerance (1e-6)

Criteria

Solvers

SD DT IAE

Points Rank Points Rank Points Rank

ode15s 116.37 - 98.45 1 123.16 3

ode45 125.51 1 53.29 3 124.23 2

ode23s 76.14 - 18.90 - 119.61 -

ode113 123.70 2 27.50 - 128.16 1

ode23tb 100.29 - 18.85 - 120.84 -

ode23t 95.42 - 76.44 2 120.07 -

ode23 119.12 3 15.83 - 122.61 -

Error Tolerance (1e-9)

Criteria

Solvers

SD DT IAE

Points Rank Points Rank Points Rank

ode15s 126.23 3 15.02 - 110.67 -

ode45 128.39 2 112.28 1 128.77 1

ode23s 75.89 - 36.91 3 119.41 3

ode113 128.96 1 44.91 2 126.56 2

ode23tb 102.33 - 15.26 - 102.23 -

ode23t 98.66 - 19.97 - 116.53 -

ode23 119.39 - 23.58 - 118.65 -

VI. DISCUSSION

From the results of Table 3 and Table 4, general guidelines can

be extracted for application to the class of hybrid problems with

short-duration impacts and long-duration flight phases, as that of

a hopping monopod.

Looking at Table 3 and Table 4, to our surprise, ode45 and

ode113 were among the best three performing ODE solvers most

of the time. The ode15s performed distinctively well mainly for

error tolerance (1e-6), while ode23s showed good results two

times using the “if…else…end” transition strategy, and three

times for an event function based transition strategy. The ode23

showed that could provide fast solutions for error tolerance (1e-

3) to (1e-6), but was in most cases overruled in accuracy by other

solvers. The ode23tb mainly fared well for crude error tolerance

(1e-3), while ode23t only once per table with respect to the DT

criterion. Therefore, although in many simulations of legged

robots the preference is for stiff solvers to address hybrid

problems with impacts, such as the ode15s or the ode23s, [40],

[41], this preference does not seem to be justified based on the

obtained results.

Comparing the results from Tables 3 and 4, in almost all cases

using the built-in event function, the SD of all solvers

deteriorated. For instance, for error tolerance (1e-3) ode15s

scored 102.77 points for SD in the “if…else…end” case (Table

3), while it only scored 87.50 points for SD in the event function

case, for the same error tolerance (Table 4). The same

observation applies for the performance of all solvers in SD,

comparing results for the same error tolerance, and for both

phase transition strategies. The performance of ode45 and

ode113 with respect to the DT and IAE criteria was a little higher

in comparison to the “if…else…end” case; the performance of

all other solvers was mixed with respect to these criteria.

Based on the above observations, the guideline that emerges is

that if someone is simply interested in obtaining the response of

a similar hybrid system with impacts, the ode45 or the ode113

should be tried first, with the ode15s and ode23s to be considered

next. In the case that the event function is considered for phase

transition, it is pointed out that the performance of the ODE

solver used will deteriorate in solution speed, without necessarily

improving in accuracy.

Using Table 3 and Table 4, case-specific guidelines can be also

proposed. For instance, assume one is interested in obtaining the

response of a hybrid system with impacts, with phase transition

using an “if…else…end” statement, and error tolerance (1e-6).

Assume also that SD is twice as important as IAE, while DT is

unimportant. In such a case, one may use the results provided in

Table 3 under the legend Error tolerance (1e-6) to calculate a

weighted sum of total points totp for every solver, defined by:

 tot SD SD DT DT IAE IAEp w p w p w p   (36)

where SDp , DTp and IAEp are the points obtained and SDw , DTw

and IAEw

the weighting factors of the ODE solver in the

corresponding to the subscript criteria. For the example case

study, the weighting factors are assigned values 2SDw  ,

0DTw 

and 1IAEw  . Using (36), the calculated weighted sum

is shown in Table 5. This table also indicates that the best ODE

solver for this case is ode113, a solver recommended for nonstiff

problems.

E. Papadopoulos CND-16-1600 8

Table 5. Ranking of ODE solvers, for error tolerance (1e-

6), transition by an “if…else…end” statement, and

weighting factors 2SDw  , 0DTw  , and 1IAEw  .

Solver totp Rank

ode15s 364.47 -

ode45 376.16 2

ode23s 287.71 -

ode113 376.80 1

ode23tb 335.03 -

ode23t 329.50 -

ode23 371.36 3

VII. CONCLUSIONS

Hybrid systems represent a class of problems that cycle

between phases when the system EoM is stiff (interaction with

the ground) and phases when it is nonstiff (flight phases). As the

question of selecting the best solver for such a system was open,

in this paper a method was proposed to provide guidelines for

selecting an ODE solver and its parameters for such systems. A

monopod hopper interacting compliantly with the ground was

introduced as a new benchmark problem, and used to compare

the solvers available in the widely used Matlab ODE Suite,

according to three criteria for solution speed, and accuracy. To

provide generality to the results, the mathematical description of

the model was brought to a dimensionless form, and its

dimensionless parameters were varied in a range taken from

existing systems and corresponding to different levels of

numerical stiffness. The effects of error tolerance and phase

transition strategy were also studied. Finally, guidelines were

provided, for selecting the appropriate ODE solver, both overall

and case-specific. Interestingly, the best solver for a realistic case

turned out to be a solver recommended for numerically nonstiff

problems.

ACKNOWLEDGMENT

Funding for this research by the “IKY Fellowships of Excellence

for Postgraduate Studies in Greece – Siemens Programme” in the

framework of the Hellenic Republic – Siemens Settlement

Agreement is acknowledged.

REFERENCES
[1] Park, H. W., Wensing, P. M., & Kim, S., 2017, "High-speed bounding with

the MIT Cheetah 2: Control design and experiments." The International

Journal of Robotics Research, 0278364917694244.

[2] Paraskevas, I., and Papadopoulos, E., 2016, "Parametric sensitivity and
control of on-orbit manipulators during impacts using the Centre of

Percussion concept." Control Engineering Practice 47: 48-59.

[3] Vasilopoulos, V., Paraskevas, I. and Papadopoulos, E., 2014, "All-terrain
Legged Locomotion Using a Terradynamics Approach," in 2014

International Conference on Intelligent Robots and Systems (IROS '14),

Chicago, Illinois, Sept. 14–18.
[4] Blum, Y., Lipfert, S. W., Rummel, J. and Seyfarth, A., 2010, "Swing leg

control in human running," Bioinspiration & biomimetics, 5(2).

[5] Koutsoukis, K. and Papadopoulos, E., 2016, "On Passive Quadrupedal
Bounding with Translational Spinal Joint," in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS ‘16), Deajeon, Korea,

October 9-14.
[6] Byrne, G. D. and Hindmarsh, A. C., 1987, "Stiff ODE solvers: A review

of current and coming attractions," Journal of Computational Physics,

70(1), pp. 1-62.

[7] Petcu, D., 2004, "Software issues in solving initial value problems for
ordinary differential equations," Creative Math, 13, pp. 97-110.

[8] Hull, T. E., Enright, B. M. and Sedgwick, A. E., 1972, "Comparing

numerical methods for ordinary differential equations," SIAM Journal on
Numerical Analysis, 9(4), pp. 603-637.

[9] Enright, H. W., Hull, T. E. and Lindberg, B., 1975, "Comparing numerical

methods for stiff systems of ODE's," BIT Numerical Mathematics, 15(1),
pp. 10-48.

[10] Krogh, F. T., 1973, "On testing a subroutine for the numerical integration

of ordinary differential equations," Journal of the ACM (JACM), 20(4), pp.
545-562.

[11] Enright, W. H. and Pryce, J. D., 1987, "Two FORTRAN packages for

assessing initial value methods," ACM Transactions on Mathematical
Software (TOMS), 13(1), pp. 1-27

[12] Shampine, L. F., 1981, "Evaluation of a test set for stiff ODE solvers," ACM

Transactions on Mathematical Software (TOMS), 7(4), pp. 409-420.
[13] Nowak, U. and Gebauer, S. , 1997, "A new test frame for ordinary

differential equation solvers," ZIB.

[14] Mazzia, F., Iavernaro, F. and Magherini, C., 2008, "Test set for initial value
problem solvers," Department of Mathematics, University of Bari.

[15] https://cran.r-project.org/web/packages/deTestSet/index.html.
[16] https://github.com/mauro3/IVPTestSuite.jl.

[17] Auer, E. and Rauh, A. , 2012, "VERICOMP: a system to compare and

assess verified IVP solvers," Computing, 94(2-4), pp. 163-172.
[18] https://www.mathworks.com/help/matlab/math/choose-an-ode-

solver.html.

[19] Gattwald, B. A. and Wanner, G., 1982, "Comparison of numerical methods
for stiff differential equations in biology and chemistry," Simulation, 38(2),

pp. 61-66.

[20] Radhakrishnan, K., 1984, "Comparison of numerical techniques for
integration of stiff ordinary differential equations arising in combustion

chemistry," NASA Technical Paper 2372.

[21] Sandu, A., Verwer, J. G., Van Loon, M., Carmichael, G. R., Potra, F. A.,
Dabdub, D. and Seinfeld, J. H., 1997, "Benchmarking stiff ode solvers for

atmospheric chemistry problems-I. implicit vs explicit," Atmospheric

Environment, 31(19), pp. 3151-3166
[22] Nejad, L. A., 2005, "A comparison of stiff ODE solvers for astrochemical

kinetics problems," Astrophysics and Space Science, 299(1), pp. 1-29.

[23] Petzold, L., 1983, "Automatic selection of methods for solving stiff and
nonstiff systems of ordinary differential equations," SIAM journal on

scientific and statistical computing, 4(1), pp. 136-148.

[24] Shampine, L. F., 1977, "Stiffness and nonstiff differential equation solvers,
II: detecting stiffness with Runge-Kutta methods," ACM Transactions on

Mathematical Software (TOMS), 3(1), pp. 44-53.

[25] Felgner, F., Liu, L., Frey, G., 2011, "Vergleich numerischer Löser zur
Simulation steifer und hybrider Systeme.", Proceedings of the Kongress

Automation, ISBN 978-3-18-092143-3, VDI-Berichte 2143, pp. 303-306,

Baden-Baden, Germany.
[26] Abelman S. and Patidar, K. C., 2008, "Comparison of some recent

numerical methods for initial-value problems for stiff ordinary differential

equations," Computers & Mathematics with Applications, 55(4), pp. 733-
744.

[27] Shampine, L. and Thompson, S., 2000, "Event location for ordinary

differential equations," Computers & Mathematics with Applications, 39(5-
6), pp. 43-54.

[28] Shampine, L. and Reichelt, M., 1997, "The MATLAB ODE Suite," SIAM

Journal on Scientific Computing, 18(1), pp. 1-22.
[29] Shampine, L. F., Gladwell, I. and Thompson, S., 2003, "Solving ODEs with

matlab," Cambridge University Press.

[30] Ashino, R., Nagase, M. and Vaillancourt, R., 2000, "Computers &
Mathematics with Applications," Behind and beyond the MATLAB ODE

suite, 40(4), pp. 491-512.

[31] Gilardi, G. and Sharf, I., 2002, "Literature survey of contact dynamics
modeling," Mechanism and Machine Theory, 37(10), pp. 1213-1239. DOI:

10.1016/S0094-114X(02)00045-9

[32] Buckingham, E., 1914, "On physically similar systems; illustrations of the
use of dimensional equations," Physical Review, 4(4), pp. 345-376. DOI:

10.1103/PhysRev.4.345

[33] Cherouvim, N. and Papadopoulos, E., 2008, "The SAHR Robot -
Controlling Hopping Speed and Height Using a Single Actuator," Applied

Bionics and Biomechanics, 5(3), pp. 149-156. DOI:

10.1080/11762320802564218
[34] Ahmadi, M. and Buehler, M., 2006, "Controlled Passive Dynamic Running

Experiments With the ARL-Monopod II," IEEE Transaction on robotics,
22(5), pp. 974-986. DOI: 10.1109/TRO.2006.878935

E. Papadopoulos CND-16-1600 9

[35] Raibert, M.,1986, "Legged Robots that Balance," The MIT Press, pp. 145-
146.

[36] Okubo, H., Nakano, E. and Handa, M., 1996, "Design of a Jumping

Machine Using Self-energizing Spring," in IROS. DOI:
10.1109/IROS.1996.570659

[37] Vasilopoulos, V. and Paraskevas, I., Papadopoulos E., 2015, "Control and

Energy Considerations for a Hopping Monopod on Rough Compliant
Terrains," in ICRA, Washington. DOI: 10.1109/ICRA.2015.7139832

[38] Spijker, M., 1996, "Stiffness in numerical initial-value problems," Journal

of Computational and Applied Mathematics, 72(2), pp. 393-406. DOI:
10.1016/0377-0427(96)00009-X

[39] https://www.mathworks.com/help/matlab/math/ode-event-location.html.

[40] Machairas, K., and Papadopoulos, E., 2016, "An Active Compliance
Controller for Quadruped Trotting," in MED, Athens.

[41] Saha, S., Fiorini, P. and Shah, S., 2006, "LANDING MECHANISMS FOR
HOPPING ROBOTS: CONSIDERATIONS AND PROSPECTS," in

ASTRA, Noordwijk.

[42] Khulief Y.A., 2012, "Modeling of Impact in Multibody Systems: An
Overview.", ASME. J. Comput. Nonlinear Dynam, 8(2) : 021012 - 021012

- 15. DOI: 10.1115/1.4006202

[43] Hunt K. H., Crossley F. E., 1975, "Coefficient of Restitution Interpreted as
Damping in Vibroimpact.", ASME. J. Appl. Mech., 42(2), pp. 440-445.

DOI:10.1115/1.3423596.

[44] Papetti S., Avanzini F. and Rocchesso D., 2011, "Numerical Methods for a
Nonlinear Impact Model: A Comparative Study With Closed-Form

Corrections," in IEEE Transactions on Audio, Speech, and Language

Processing, 19(7), pp. 2146-2158, DOI: 10.1109/TASL.2011.2118204

