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a b s t r a c t

Space manipulator systems are designed to have lightweight structure and long arms in order to achieve
reduction of fuel consumption and large reachable workspaces, respectively. Such systems are subject to
link flexibilities. Moreover, space manipulator actuators are usually driven by harmonic gear mechanisms
which lead to joint flexibility. These types of flexibility may cause vibrations both in the manipulator and
the spacecraft making the positioning of the end-effector very difficult. Here, both types of flexibilities
are lumped at the joints and the dynamic equations of a general flexible joint space manipulator are
derived. Their internal structure is highlighted and similarities and differences with fixed-base robots are
discussed. It is shown that one can exploit the derived dynamic structure in order to design a static
feedback linearization control law and obtain an exact linearization and decoupling result. The appli-
cation of such controllers is desired in space applications due to their small computational effort. In case
of fixed-base manipulators, the effective use of a static feedback controller is feasible only if a simplified
model is considered. Then, the proposed static feedback linearization control law is applied to achieve
end-effector precise trajectory tracking in Cartesian space maintaining a desirable non-oscillatory motion
of the spacecraft. The application of the proposed controller is illustrated by a planar seven degrees of
freedom (dof) system.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In space applications, manipulator construction is different
than that in terrestrial manipulators. To reduce launch mass and
increase workspace, the design of lightweight and long reach
manipulators is strongly preferred. However, a problem of such
lightweight space manipulators is the increased structural flex-
ibility of the links. This link flexibility causes structural vibrations,
which are profound when manipulating large payloads. In addi-
tion to link flexibilities, space manipulators are also subject to joint
flexibilities. Such flexibilities arise primarily due to motor torque
ripples, joint transmission elements such as gears (e.g., harmonic
drives), and actuator shafts.

In this paper, all system flexibilities are lumped to joint flex-
ibilities, aiming in studying their effects in the design of control
systems, and in endpoint positioning. Lumping of all flexibilities at
the joint level is reasonable for systems with short links, such as
the free-floating/free-flying space manipulator systems under
study, or for flown systems such as the ETS-7 and the Orbital
Express.

The control of flexible joint space robotic manipulators
,

represents a very challenging problem, mainly because the num-
ber of degrees of freedom of the system is twice as the number of
control inputs. In some cases, joint flexibility can lead to instability,
when neglected in the control design.

In most papers, the flexibility of the robot structure is ne-
glected. This assumption is acceptable if the robot structure is stiff
enough. In space applications where lightweight structures are
desired, the avoidance of flexibility effects requires very slow
motions of the manipulator. However, manipulator oscillations
may become evident even in very slow motions when very large
payloads are handled.

Over the past decades, dynamic models of different detail level
have been proposed for fixed-base manipulators with flexible
joints. A simplified model, the so called reduced model assumes
that the angular kinetic energy of the rotors of the motors is due
only to their relative spinning around the driving axes (Hung and
Spong, 1989). A more accurate dynamic model, called complete,
includes also the inertial couplings existing between the motors
and the links (De Luca, 1998). Each of these models has different
structural properties from the point of view of control.

Several controllers have been proposed to address the flexible
joint control problem for fixed-base manipulators, including
techniques similar to those for rigid robots. Tomei proposes a
simple PD regulator for flexible joint robots, providing simulation
results for a regulation problem about a reference position (Tomei,
1991). An extension of the PD regulator for flexible joint robot
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Fig. 1. A space robotic manipulator system.
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manipulators considering also actuators dynamics as well as fric-
tion is presented by Lozano, Valera, Albetos, Arimoto, and Na-
kayama (1999).

A different modelling approach called singular perturbation
method can be applied when the joint stiffness is relatively large,
but still finite. Then, the system exhibits a two-time scale dynamic
behaviour in terms of rigid and elastic variables. Using this
method, one can apply controllers which consist of a slow control
action designed on the basis of a rigid robot model and a fast
control action designed to damp the elastic oscillations at the
joints (Hung & Spong, 1989).

As mentioned above, the model structure of fixed-base ma-
nipulators with elastic joints affects the control method. The re-
duced model can be fully decoupled and linearized exactly by
means of a nonlinear static state feedback control law, similarly to
the well-known computed torque method for rigid manipulators
(Spong, 1987). On the other hand, when considering the more
complete dynamics, a satisfactory end-effector control is feasible
only by applying a more complex dynamic state feedback controller
(De Luca and Lucibello, 1998). The application of these controllers,
assume the availability of both motor and link angular position
and velocity as well. However, the full state measurement of the
elastic joint manipulator is not usually available. In such a case, the
application of observer techniques is necessary. A new observer
which uses only motor position sensing, together with accel-
erometers suitably mounted on the links of the robot arm was
introduced by De Luca, Lucibello, Schroder, and Thummel (2007).
Its main advantage is that the error dynamics on the estimated
state is independent from the dynamic parameters of the robot
links, and can be tuned with standard decentralized linear
techniques.

It is well known that the manipulator natural frequencies are
continuously changing with manipulator configuration and pay-
load (Book, 1993). Moreover, in space applications, when handling
large payloads, manipulator joint or structural flexibility becomes
important and can result in payload-attitude controller fuel-re-
plenishing dynamic interactions. Such interactions may lead to
control system instabilities, or manifest themselves as limit cycles
(Martin, Papadopoulod, & Angeles, 1999). Therefore, the control of
these systems is more sophisticated.

Martin, Papadopoulos and Angeles examined the possible dy-
namic interactions between the attitude controller of a spacecraft
and the flexible modes of a space manipulator mounted on it
(Martin et al., 1999). The authors proposed a control scheme based
on on–off thrusters valves, since proportional thruster valves and
thus, classical PD and PID control laws were not initially in use. Hu
and Vukovich applied the singular perturbation theory in order to
control the object position and internal forces as well as the joint
elastic forces for a free-flying space robotic system (Hu & Vucovich,
1997). However, the proposed controller does not guarantee a
non-oscillatory motion of the manipulators and their spacecraft.
Ferretti et al. proposed a torque controller for a two-mass system
with elastic behaviour (Ferretti, Magnani, Rocco, Viganò & Rusconi,
2005). The results show that the use of the torque sensor in the
joints of the DEXARM space robot would be beneficial for the
purpose of high performance motion control. More recently, Ulrich
and Sasiadek addressed the problem of adaptive trajectory control
of space manipulators that exhibit elastic vibrations in their joints
and that are subject to parametric uncertainties and modelling
errors (Ulrich & Sasiadek, 2012). In order to control the space
manipulator, an inertially-stabilized platform assumption was
adopted.

In this paper, we study the dynamics of space manipulators,
considering all the flexibilities lumped at the joints. In terrestrial
manipulators a static feedback controller, with small computa-
tional effort, can be used only if a reduced model is considered.
However the reduced model is not a realistic one in most cases
since it assumes that the kinetic energy of each rotor is due only to
its own rotation. If a complete model is considered, then a dy-
namic feedback controller should be applied increasing the com-
putational effort. Note that the computational effort is an im-
portant factor in space applications. However, using the Lagrange
approach, it is shown that the structure of the dynamics of the
flexible joint space manipulators differs than the model structure
of the terrestrial ones. Thus, the derived model structure gives
new opportunities in the design of trajectory following controllers.
Therefore, exploiting the structure of the derived dynamic model,
the system can be linearized and decoupled via a static feedback
linearization controller reducing the computational effort. Next,
the proposed controller is applied so that the end-effector follows
a desired path in Cartesian space in the presence of joint flex-
ibilities maintaining a desirable non-oscillatory motion of the
spacecraft. The application of the method is illustrated by an
example.
2. Dynamics of flexible joint space manipulators

This section develops the dynamic equations of a flexible joint
space manipulator. We consider a system whose manipulator has
revolute joints and an anthropomorphic open chain kinematic
configuration for maximum reachable workspace. Under the as-
sumption of no external forces, the system Center of Mass (CM)
does not accelerate, and the system linear momentum is constant.
With the further assumption of zero initial linear momentum, the
system CM remains fixed in inertial space, and the origin, O, can be
chosen to be the system CM, see Fig. 1.

The N joints are actuated by DC brushless motors equipped
with harmonic drive mechanisms. Due to the use of the harmonic
drives, all joints are considered to be flexible. When reduction
gears are present, they are modelled as being placed before the
joint deflection occurs, see Fig. 2.

The dynamic model of flexible manipulators requires doubling
of the generalized coordinates in a Lagrangian approach, i.e. both
the link and gear reduction angular position q and mθ , respectively.
The model derivation is accomplished using the following as-
sumptions. (i) We consider small joint deflections. Thus, the elastic
and dynamic friction effects of the harmonic drive mechanism are
modelled using a torsion spring of constant stiffness k and a
damping element b, respectively, as shown in Fig. 2. (ii) The ac-
tuator rotors are modelled as additional rigid bodies and having
their CM on the rotation axis. The motor stators are considered to
be mounted on manipulator links. (iii) Since the location of the



Fig. 2. The flexible joint model.
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actuators along the manipulator structure has a great influence on
the form of the derived equations of motion, we consider, for
simplicity, that the i-th motor moves link i and is mounted on link
i–1 with its rotation axis aligned with the i-th joint.

Next, we study the influence of the motors in the equations of
angular momentum and the kinetic energy. The derivation of the
equations of motion follows.

2.1. Motor effect on the system angular momentum

In free-floating mode, where the spacecraft actuators are
turned-off and the control of the space system is feasible using
only manipulator actuators, the conservation of the system an-
gular momentum defines the spacecraft response according to the
manipulator motion. Thus, first, we study the effect of motor
inertia properties (mass and moment of inertia) on the system’s
angular momentum.

Consider the space manipulator link i and rotor i at joint i as
shown in Fig. 3. The link has mass mi and moment of inertia re-
lative to its CM equal to Ii. The rotor i has mass mmi and Imi is the
moment of inertia with respect to its axis. The positions of the link
and rotor CM from the space manipulator CM are at the distances

iρ and miρ , respectively, see Fig. 3. The link angular velocity is iω
and the rotor’s one is miω , see Fig. 2.

The angular momentum of a N link space manipulator with
respect to its CM, hCM, is given by

m

m m

h I

I I
1k

N

k m

CM 0 0 0 0

k k k k m m m m

0

1
kk k k k( )∑

ω ρ ρ̇

ω ρ ρ̇ ω ρ ρ̇

= ⋅ + ×

+ ⋅ + × + ⋅ + ×
( )=

where the index 0 corresponds to the spacecraft.
The angular velocity of the rotor k is given by

n z 2k mm k m1 kk kθω ω= + ̇ ( )−

where n 1k > is the reduction ratio at the i-th joint, mkθ is the gear
reduction angular position, see Fig. 2, zmk is the unit vector in the
direction of the rotor rotation axis and k 1ω − is the angular velocity
of the link i�1.
Fig. 3. Definition of the link-motor system CM.
The presence of the rotor shifts the CM of the system link-rotor
at a new position given by the vector iρ*, see Fig. 3. The vectors ri

*

and Ii
* of the rotor-link CM from the link joints are shown in Fig. 3.

Since the vectors iρ*, iρ and miρ are defined with respect to the

system CM, it can be shown that
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where ri and li are the corresponding vectors from the link CM, see
Fig. 3.

Eq. (1) can be simplified, if one expresses the vectors iρ and miρ
as a function of the vector iρ*. It can be shown that
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The time derivatives of the above vectors are as follows:
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Using (2), (4a), (4b), (5a) and (5b), the angular momentum,
given by (1), can be written as follows:
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where the symbol (⋅)× denotes the construction of a skew-sym-
metric matrix from the components of (⋅), and

m m m 7bk k mk= + ( )*

The first sum of (6) can be written as:

nI R D D qm ,
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where 0
0ω is the spacecraft angular velocity expressed in the

spacecraft frame and nR ,0 ε( ) is the rotation matrix between the
spacecraft 0th and the inertial frame expressed as a function of the
spacecraft unit quaternion n,ε . The inertia-type matrices D0 * and
Dq

0 * are identical in form to the matrices correspond to space
manipulators which do not include the motor inertial properties
and are given in (Papadopoulos & Dubowsky, 1993). In order to
take into account the influence of the motor inertial properties,
one has just to replace the variables mk, Ik, lk and rk with mk

* , Ik
* , lk

*

and rk
* given by (3a), (3b), (7a) and (7b). The column vector q is the

link angular position given by

⎡⎣ ⎤⎦q q qq 8bN
T

1 2= ⋯ ( )
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The second sum of (6) is exclusively due to the motor dynamics
and is equal to:

n nI z R D,
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( )

θ
=

−

+ + ++

where the inertia-type matrix D0
mθ is given in Appendix A and the

column vector mθ is the gear reduction angular position
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Finally, the system angular momentum takes the form
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2.2. Motor effect on the system kinetic energy

To obtain the equations of motion of the system, first the sys-
tem kinetic and potential energy have to be derived.In this section,
we study the influence of joint motor inertia properties (mass and
moment of inertia) in the total system kinetic energy.

The space manipulator kinetic energy, including motor inertial
properties, is given by
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Using (2), (4a), (4b), (5a) and (5b), the kinetic energy is sim-
plified as follows:
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The first two sums of (12b) can be written as follows:
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where the inertia-type matrix Dqq
0 * corresponds to the matrix Dqq

0

(Papadopoulos & Dubowsky, 1993) and is obtained by replacing
the variables mk, Ik, lk and rk with mk

* , Ik
* , lk

* and rk
* given by (3a),

(3b), (7a) and (7b).
The third and fourth sum of (12b) can be written, respectively,

as follows:
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where the inertia-type matrices Dq
0

mθ and D m mθ θ are given in Ap-
pendix A.

Thus, the kinetic energy of the system takes the form
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2.3. Equations of motion

The equations of motion of the system are derived using the
Lagrangian approach. The system kinetic energy, including the
motor inertial properties, has been determined above. Next, the
system potential energy and the dissipation energy are derived.

The potential energy due to gravity is zero. However, the po-
tential energy due to joint flexibility and the dissipation energy are
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Using ,T T T
0

0[ ω Θ̇ ] as the vector of generalized speeds, and em-
ploying a quasi-coordinate formulation yields (Nanos & Papado-
poulos, 2011):
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where gCM is the vector of the moments of external forces acting
on the spacecraft, with respect to the system CM, expressed in the
inertial frame and Q is the vector of generalized forces
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where n is the N�N diagonal matrix of the joint reduction ratios

diag n n nn , , ... , 20aN1 2= ( ) ( )
and τ is the column vector of the motor torques, see Fig. 2:



Fig. 4. A planar 7-dof space system.
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20bN T1 2τ τ ττ = [ ⋯ ] ( )

2.3.1. Free-flying mode
In this paper we consider that in the free-flying mode the

spacecraft is controlled only by reaction wheels (RW) in order to
avoid the thruster fuel consumption. Thus the vector gCM in (19a)
contains only the torques resulting by reaction wheels action.

Combination of (14), (16a), (16b), (19a), (19b) and (19c) yields
the following:
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* are the column vectors containing centrifugal and
Coriolis forces and are given by
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2.3.2. Free-floating mode
In the case of free-floating manipulators, the moments of ex-

ternal forces acting on the spacecraft are equal to zero, i.e.
g 0CM = , and the angular momentum hCM defined in (10) is con-
stant. We assume that the angular momentum is zero.

Solving (21a) for 0
0ω̇ and substituting in (21b) yields,
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where the inertia matrix H Θ*( ) is given by
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥H D D D D

H H

H H 24a
T

0 T0 0 10 qq q

q

m

m m m

Θ*( ) = − ( *) =
( )

ΘΘ Θ Θ
θ

θ θ θ

−
*

and the column vector of centrifugal and Coriolis forces is

C C D D C, , 24b0
0

2
T0 0 1

1ω Θ Θ̇( ) = − ( *) ( )Θ
* − *

Then, substituting the vector 0
0ω from (10) in (24b) results in

⎡
⎣⎢

⎤
⎦⎥C

C

C
D D D D

D D D D

1
2

1
2 24c

T T T

T T

1

2

0 0 0 0

0 0 0 01

Θ̇
Θ

Θ̇
Θ

Θ̇

Θ̇
Θ

Θ̇
Θ

Θ̇

= = [
∂( ( *) )

∂
+

∂( )
∂

]

− [
∂( )

∂
+

∂( ⋅( *) )
∂

] ( )

Θ Θ ΘΘ

ΘΘ Θ Θ

−

−

To use these equations of motion, in controller design, they are
written in the following form of link and motor equations:

H q q H q h 0, 25aqq q m 1m¨ θ̈ Θ Θ̇( ) + ( ) + ( ) = ( )θ

H q q H q h n, 25b
T
q m 2m m m¨ θ̈ Θ Θ̇ τ( ) + ( ) + ( ) = ⋅ ( )θ θ θ

where

h C q K q B q, , 26a1 1 m mΘ Θ̇ Θ̇ θ θ̇ ̇( ) = ( ) − ( − ) − ( − ) ( )

and

h C q K q B q, , 26b2 2 m mΘ Θ̇ Θ̇ θ θ̇ ̇( ) = ( ) + ( − ) + ( − ) ( )

Thus, under the assumptions of free-floating systems, the
equations of motion of a flexible joint space manipulator system
with uncontrolled spacecraft can be reduced from 2Nþ6 to just
2N, that is as many as the flexible joint manipulator dof.

2.4. Planar manipulators

In the case of planar systems, such as the 7-dof (i.e. 2-dof for
each flexible joint and 3-dof for the spacecraft) system shown in
Fig. 4, the equations of motion can be simplified. The corre-
sponding equations used for the free-flying and the free-floating
modes are given next.

2.4.1. Free-flying mode
As mentioned above, in this paper we consider that in the free-

flying mode the spacecraft is controlled only by reaction wheels.
Eqs. (21a) and (21b) can be written in a matrix form:
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⎡
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⎢
⎢
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⎢
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⎥
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⎢
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⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

D

D

D c

D C

0

K
K

q
0

B
B

q
Q

27

rw

0

T0 0
2

1 N

m

1 N

m

0
0 1θ

τ

Θ̈

θ θ̇ ̇

* ¨
+

+ − ( − ) + − ( − ) =
( )

Θ

Θ ΘΘ

*

*

× ×

where rwτ is the torque acting on the spacecraft by the RW, 0θ
denotes the spacecraft attitude and the inertia type matrices D0 *,
D0

Θ and D0
ΘΘ for the 7-dof planar manipulator shown in Fig. 4, are

given in Appendix B.
Note that in planar space manipulators, the vectors 0

0ω and hCM
0

(as well as the vector hCM) are parallel (the direction of both vector is
normal to the motion plane). Therefore, the cross product of these
vectors appears in (22a) is equal to zero and (22a) takes the form

C
D D

, , 281

0 0

0
0θ

θΘ Θ̇
Θ

Θ̇
Θ

Θ̇( ̇ ) = (
∂( * ̇ )

∂
+

∂( )
∂

) ( )
Θ*

For the 7-dof manipulator in Fig. 4, it can be shown that (28)
and (22b) can be written as:

d d q q

d d q q q q

C q q, , 2

2 2 29a

1 0 01 02 0 1 1
2

12 02 0 2 1 2 2
2

θ θ

θ

̇( ̇ ) = − ( ^ + ^ )( ̇ ̇ + ̇ )

− ( ^ + ^ )( ̇ ̇ + ̇ ̇ + ̇ ) ( )

*
* *

* *

and

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

d q q q q d d

d q q d dC q q, ,

2 2

2

0
0 29b

2 0

12 1 2 0 2 2
2

01 02 0
2

12 0 1 1
2

12 02 0
2θ

θ θ

θ θ̇( ̇ ) =

− ^ ( ̇ ̇ + ̇ ̇ + ̇ ) + ( ^ + ^ ) ̇

^ ( ̇ ̇ + ̇ ) + ( ^ + ^ ) ̇

( )

*

* * *

* * *

where the terms dij
^ *

are functions of q and defined in Appendix B.

2.4.2. Free-floating mode
In the free-floating mode, the equations of motion for both

planar and spatial systems are given by (23), repeated here,

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥H C q K

K
q B

B
q Q, m mΘ Θ̈ Θ̇ θ θ̇ ̇*( ) + ( ) + − ( − ) + − ( − ) =

where H Θ*( ) is the inertia matrix and C q, Θ̇( ) is the column vector
of the centrifugal and Coriolis forces given by (24a) and (24c),
respectively. The inertia type matrices Hqq

* , Hq mθ and H m mθ θ used in
(24a), for the planar 7-dof manipulator shown in Fig. 4, are given
in Appendix C.

Note that the column vector of the centrifugal and Coriolis
forces can be found by (24b), as well. However, in planar free-
floating manipulators with no external forces or torques, the
vector of angular momentum is constant, and therefore the col-
umn vector given by (22a) is zero:

C
D D h

0, , 30a1

0 0
CM

0

0
0θ

θΘ Θ̇ Θ̇
Θ

Θ̇ =
Θ

Θ̇ =( ̇ ) =
∂( * ̇ + )

∂
∂( )

∂ ( )
Θ*

Therefore, vector C reduces to,

C q q C q q, , , , 30b20 0θ θ̇ ̇( ̇ ) = ( ̇ ) ( )*

where the column vector C q q, ,2 0θ ̇( ̇ )* , for the planar 7-dof ma-
nipulator shown in Fig. 4, is given by (29b) and the spacecraft
angular velocity 0θ ̇ results from the angular momentum conserva-
tion. Assuming zero initial angular momentum, (10) takes the
following form:

D
D

1
30c

0
0 0

θ Θ̇̇ =
* ( )Θ
where the term D0 *, and the matrix D0
Θ, for the planar 7-dof

manipulator shown in Fig. 4, are given in Appendix B.

2.5. Comparison with fixed-base manipulators

The coupling matrix H qq m( )θ , which appears in (25a) and (25b),
represents the inertial coupling between motor and link accel-
erations. According to the assumption (iii), the motor i is mounted
on link i�1 and rotates link i. Since, in fixed-base manipulators,
the velocity (linear and/or angular) of motor i is independent of
the motion of the link i and the subsequent ones, the matrix
H qq m( )θ always has the following strictly upper-triangular struc-
ture (De Luca, 1998):

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
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⋯

⋯

θ

−

−

−

− − − −

−

However, in space robotic systems, any motion of a single link
creates a reactional motion in the whole system. Thus, in free-
floating space manipulators, the coupling matrix H qq m( )θ does not
have a strictly upper- triangular structure. For example, the coupling
matrix H qq m( )θ for a 7-dof planar free-floating manipulator is:
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θ

Note that, when the spacecraft mass and moment of inertia
approach to infinity,

m I, 32a0 0→ ∞ → ∞ ( )

Then

D
D

D
D
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D
m
D
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D
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32b
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→ → → → ( )

Application of the above limits in the inertia matrices Hqq
* , Hq mθ

and H m mθ θ of a 7-dof planar free-floating manipulator, given in
Appendix C, results in the following matrices

⎡
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⎢⎢

⎤
⎦
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h h

h h
H

33a
qq

11 12

12 22
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( )
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θ
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n I

n I
H

0

0 33c

m

m

1
2

2
2m m

1

2

=
( )

θ θ

where the terms hij in (33a) are given in Appendix D.
The above matrices are identical to those for a 4-dof fixed-base

flexible joint planar manipulator (De Luca, 1998).
3. Control issues of flexible joint space manipulators

This section deals with the control issues of flexible-joint space



Table 1
Parameters of the 3 body planar system.

Body mi (kg) li (m) ri (m) Ii (kg m2)

0 4000 5.0 5.0 666.7
1 200 5.0 5.0 33.3
2 1000 2.5 2.5 50.0

Table 2
Parameters of the motors and the drive mechanisms.

Motor ni ki (Nm/rad) bi (Nms/rad) mmi (kg) Imi (kg m2)

1 50 1000 14.1 1.0 0.00002
2 50 1000 14.1 1.0 0.00002

K. Nanos, E.G. Papadopoulos / Control Engineering Practice 45 (2015) 230–243236
manipulators. Like fixed-base manipulators, the basic control
problems of flexible-joint space manipulators are the regulation
control, where the manipulator is driven to a desired final con-
figuration, and the trajectory tracking control where time-varying
trajectories are commanded to be followed by the manipulator.

In fixed-base applications, for the regulation control problem a
PID control law based on motor feedback can be used

dtK e K e K e 34a
t

m p m d m I m
0

∫τ ̇= + + ( )

where

e 34bmm ,d mθ θ= − ( )

is the position error at the output of the gear reducer, m,dθ is the
desired angle at the output of the gear reducer, and Kp, Kd and KI

are diagonal positive-definite gain matrices.
However in space applications, the use of the above controller

is inadequate. It is well-known that, in free-floating mode, dy-
namic coupling between manipulator and spacecraft exists and
therefore manipulator motions induce disturbances to the space-
craft. Thus, the oscillation motion of manipulator causes an un-
desirable oscillatory motion of the spacecraft, as shown via the
next example.

Example 1: The planar 7-dof free-floating manipulator system
with parameters in Table 1 is employed. The motor inertial prop-
erties as well as the properties of the flexible drive mechanism are
presented in Table 2.

The initial configuration of the manipulator is
q q, 0 , 30in in

o o
1, 2,( ) = ( ) and the initial spacecraft attitude is 0in

o
0,θ = .

The desired final configuration of the manipulator is
q q, 100 , 60fin fin

o o
1, 2,( ) = ( ). The manipulator is driven to the final

desired configuration in time t s100f = with zero initial and final
velocities and accelerations. The final spacecraft attitude is re-
sulted by the angular momentum conservation.

A PID control law is applied, given by (34a). Application of the
torque balance on the rotor and link, see Fig. 2, neglecting the joint
deflection (i.e. qmθ = ) and considering both viscous and coulomb
friction, results, respectively, in:

I n b n nsgn 35am m m m m c m m,τ τ θ θ τ θ= − ¨ − ̇ − ( ̇ ) ( )

and

n I b sgn 35bL m L m c L m,τ θ θ τ θ= ¨ + ̇ + ( ̇ ) ( )

where bm and c m,τ are the viscous friction and the coulomb friction
motor parameters, respectively, while bL and c L,τ are the viscous
friction and the coulomb friction link parameters.

The motor torque mτ is given by (34a) which for a single link
takes the form

k e k e k e dt 35cm p m d m I
t

m
0

∫τ = + ̇ + ( )

The combination of (35a)–(35c) results in the error dynamics
which is given by

e
n k b

I
e

n k

I
e

n k
I

e
b
I 36a

m
d e

e
m

p

e
m

i

e
m m

d e

e
m
dθ θ⃛ +

+ ¨ + ̇ + = ⃛ + ¨
( )
where the values of m
dθ ⃛ and m

dθ̈ are zero at the steady state and Je, be

are the effective inertia and effective damping, respectively, both
seen at the link side of the gear and given by

I n I I 36be m L
2= + ( )

where IL represents the moment of inertia of a link with respect to
its joint closer to the base and

b n b b 36ce m L
2= + ( )

The error dynamics, described by (36a), is linear and the de-
sired characteristic equation can be chosen as

p s s a s w

s a w s aw w s aw2 2 37

d
2

3 2 2 2

( ) = ( + )( + )

= + ( + ) + ( + ) + ( )

where w 0> and a w5≥ are the locations of the desired poles
which correspond to a critical damped second order system, i.e.

1ζ = .
The combination of the above equations yield the following PID

controller gains:

k aw w I n2 / 38ap e
2= ( + ) ( )

k a w I b n2 / 38bd e e= (( + ) − ) ( )

k aw I n/ 38ci e
2= ( )

To avoid exciting resonances, the closed-loop natural frequency
ωn,cl, i.e. the location of the desired pole w, should satisfy the
following condition:

t
6 1

5 39as
n cl res,ω ω< <

( )

where ts is the settling time of the desired response and resω is the
resonant frequency given by

k I/ 39bresω = ¯ ( )

where Ī is the equivalent reduced inertia defined as

I
n I I

n I I 39c
m L

m L

2

2
¯ =

+ ( )

Fig. 5 shows the block diagram of the closed-loop system of
Example 1, which represents the proposed PID controller applied
to the space manipulator with flexible joints and actuator
dynamics.

The selected gain matrices of the PID control input are

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥K K K26.4 0

0 5.5
, 167.9 0

0 34.9
, 1.2 0

0 0.25 40
P D I= = =

( )

Figs. 6 and 7 show the manipulator oscillating motion and the
corresponding vibration of the spacecraft. The low frequency in
the response of the manipulator is normal to space systems whose
frequencies are usually in the vicinity of 1 Hz. The resulting
spacecraft vibration may cause faulty function of several appen-
dages mounted on it such the communication antenna and the



Fig. 5. The block diagram of the closed-loop system of Example 1.

Fig. 7. The oscillatory motion of the spacecraft.

K. Nanos, E.G. Papadopoulos / Control Engineering Practice 45 (2015) 230–243 237
solar panels. Fig. 8 shows the required motor torques.
To reject undesirable spacecraft oscillations, reaction wheels

can be used. Then, the spacecraft dynamics can be written as
follows:

I T 41arw0 0θ τ¨ = + ( )

where T is the torque resulting from the manipulator motion, and
rwτ is the torque applied by the reaction wheel of the spacecraft,
which has the form of a PID controller:

k k k dt 41brw p d d d i
t

d0, 0 0, 0
0

0, 0∫τ θ θ θ θ θ θ= ( − ) + ( ̇ − ̇ ) + ( − ) ( )

where d0,θ is the desired spacecraft attitude.
Assuming constant torque T , the error dynamics of the space-

craft attitude, resulting from the combination of (41a) and (41b), is

e
k
I

e
k

I
e

k
I

e 0
41c

d p i
0

0
0

0
0

0
0⃛ + ¨ + ̇ + =

( )

where e d0 0, 0θ θ= − is the spacecraft attitude error.
Applying the same procedure as above, one can select the

control law gains as k k k7.3 10 , 4.7 10 , 3.3 10p d i
3 3 3= ⋅ = ⋅ = ⋅ . The

desired motion and control is the same as in Example 1. The re-
sulting motions of the spacecraft and the manipulator are shown
in Fig. 9. Although the RW controller establishes the desired
spacecraft motion, the manipulator oscillations have increased.

It is obvious that a control law, able to achieve non-oscillatory
motions for both the spacecraft and its manipulator, is needed. In
addition, it is desired often that the end-effector can follow a
predefined path. Thus, the proposed control law also should
Fig. 6. The oscillatory moti
achieve end-effector trajectory tracking.
In fixed-base, flexible joint manipulators, the problem of end-

effector trajectory tracking has been addressed by using dynamic
feedback linearization controllers whose computational effort is
unfeasible for space applications. A static feedback linearization
controller with much less computation effort (i.e. feasible in space
applications) can be applied only if a reduced model is considered,
due to the strictly upper- triangular structure of the coupling
matrix Hq mθ , see (31a). However, the reduced model is not a rea-
listic one in most cases since it assumes that the kinetic energy of
each rotor is due only to its own rotation.

However, the non-strictly upper-triangular structure of the
coupling matrix Hq mθ in free-floating space manipulators, see
(31b) for 7-dof planar one, gives new opportunities in the design
of trajectory following controllers.

Next, we exploit the structure of the derived dynamics, and we
propose a static feedback linearization control law, which can be
applied for path planning both in the joint and Cartesian spaces,
on of the manipulator.



Fig. 8. Motor torques for driving the manipulator to the desired configuration.
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also resulting in a non-oscillatory spacecraft motion.
4. Static feedback linearization control law

In this section, we develop a static feedback linearization
control law to decouple the link and the motor equations, given by
(25a) and (25b), for a spatial free-floating space manipulator.
However, since (25a) has not any control input, one cannot control
both link configuration q and the gear reduction angular position

mθ . Therefore, next only the control of link configuration q is
proposed and the gear reduction angular position mθ remains
uncontrolled. The required stability of mθ is examined considering
the internal dynamics of the system.

Eq. (25b) can be solved as

H q u H q q h , 42a
T

m q 2
1
m m mθ̈ ¨ Θ Θ̇= ( )( − ( ) − ( )) ( )θ θ θ

−

Fig. 9. The oscillating moti
where

u n 42bτ= ⋅ ( )

and combining with (25a), one finally yields:

q A q u G , 43¨ Θ Θ̇= ( ) + ( ) ( )

where A q( ), called the decoupling matrix, is given by

A q S q H q H q 44aq
1 1

m m m( ) = − ( ) ( ) ( ) ( )θ θ θ
− −

and

G A q h S q h, , , 44b2 1
1Θ Θ̇ Θ Θ̇ Θ Θ̇( ) = − ( ) ( ) − ( ) ( ) ( )−

and

S q H q H q H q H q 44c
T

qq q q
1

m m m m( ) = ( ) − ( ) ( ) ( ) ( )θ θ θ θ
−

on of the manipulator.
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D

Fig. 10. (a) Manipulator configurations and (b) workspace areas where D 02
0 * = .

Fig. 11. The block diagram of the proposed closed-loop system.
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Then the following model-based control law

dtu A q G q K e K e K e, 45
t

d p d I
1

0
∫Θ Θ̇ ¨ ̇= ( )( − ( ) + + + + ) ( )

−

decouples the system and the error dynamics is written as

e K e K e K e 0 46ad P I⃛ ¨ ̇+ + + = ( )

where e q qd= − is the manipulator joint error.
Thus, the selection of the diagonal positive definite gain ma-

trices Kp, Kd and KI such that their elements satisfy the condition

k k k 46bd p ii i > ( )

shows that the joint error will converge to zero, asymptotically.
Note that the control law, given by (45), is applicable only if the

decoupling matrix A q( ), given by (44a), has full rank. In free-
floating space manipulators, there are configurations q for which
the matrix A q( ) is invertible. For example, in a 7-dof planar system
the determinant of A q( ) is not zero when:

D a q q a q a0 cos cos 0 472
0

20 1 2 21 2 22* ≠ ⇒ ( + ) + ( ) + ≠ ( )* * *

where a20
* , a21

* and a22
* are constant terms given in Appendix A.

Thus, if the desired path satisfies (47), a static feedback con-
troller will decouple the system. In case where (47) is not satisfied,
i.e. D 02

0 * = , the coupling matrix Hq mθ , see (31b), is not of full rank.
According to (44a), this results in the loss of full rank of the de-
coupling matrix A q( ). Then, as results by (43), there are some joint
accelerations which are not affected no matter what joint torques
u are selected.

Fig. 10a presents the manipulator configurations where
D 02

0 * = , and Fig. 10b the workspace areas where these config-
urations may appear.

The proposed controller can achieve tracking of desired time-
varying trajectories of the configuration q. However, in space
applications, the end-effector position is not only a function of
manipulator configuration q but also depends on the spacecraft
attitude (Nanos & Papadopoulos, 2012). In the free-floating mode,
the spacecraft attitude is derived by the spacecraft angular velocity
resulting from the conversation of angular momentum. For zero
initial angular momentum, (10) is written as

D D q D 480
0 0

q
0 0

m
1

mω ̇ θ̇= − * ( * + ) ( )θ
−

So, the spacecraft attitude depends on the uncontrolled gear
reduction speed mθ̇ . However, the effect of the termwhich consists
the uncontrolled gear reduction speed mθ̇ in the above equation is
too small compared to the other term because the inertia-type
matrix D0
mθ contains the motor moments of inertia which are too

small compared with the moments of inertia of the spacecraft and
manipulator links containing in inertia-type matrix Dq

0 *. Thus, the
controller achieves both the desired manipulator configuration
and end-effector position.

Although the proposed controller can drive the end-effector
through the desired path, one should examine whether the in-
ternal dynamics will be stable also, i.e., whether the internal states
will remain bounded. In this case, we control only the link angular
position q and the gear reduction angular position mθ is un-
controlled. The internal dynamics for the free-floating manipulator
is

H q q H q h 0, 25aqq q m 1m¨ θ̈ Θ Θ̇( ) + ( ) + ( ) = ( )θ

Since the study of internal dynamics is complex, one could
study the zero-dynamics in order to make some conclusions about
the stability of the internal dynamics. The zero-dynamics result by
setting q q q 0̇ ¨= = = . Thus

H h , 49m q 1 m m
1

mθ̈ θ θ̇= − ( ) ( )θ
* − *

Note that the controller reference input is the desired manip-
ulator configuration. In case it is desired the end-effector to follow
a desired path, the computation of this configuration is feasible
only if dynamic singularities are avoided. Thus, the desired end-
effector path should lie in the PIW area of the manipulator
workspace (Papadopoulos & Dubowsky, 1993; Nanos & Papado-
poulos, 2011), or else the spacecraft initial attitude should be in-
side a feasible range (Nanos & Papadopoulos, 2012).

Fig. 11 shows the block diagram of the proposed closed-loop
system. The end-effector motion is defined by the end-effector
desired velocity rE,ḋ , as shown in Fig. 11. The desired joint rates qḋ
are provided by the inverse differential kinematics and the angular
momentum conservation (Nanos & Papadopoulos, 2012).

Example 2: To illustrate the developed method, the planar
7-dof space manipulator systemwith parameters in Tables 1 and 2
is employed. The desired path of the end-effector is a circle with
centre the point (11.5, 6.5) m and radius R¼1.5 m. The static



Fig. 12. (a) Trajectories of the manipulator relative joint angles, (b) rates of manipulator relative joint angles.

Fig. 13. (a) Trajectory of spacecraft attitude, (b) spacecraft angular velocity.
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feedback control law, given by (45), is applied. The selected gain
matrices are

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥K K K0.11 0

0 0.11
, 0.7 0

0 0.7
, 0.05 0

0 0.05 50
P D I= = =

( )

It can be shown that the desired path belongs in the PDW area
of the reachable workspace of the manipulator (Papadopoulos &
Dubowsky, 1993; Nanos & Papadopoulos, 2011, 2012). Therefore,
first one should guarantee that any possible Dynamic Singularity
(DS) during the end-effector motion will be avoided. As it has been
shown (Nanos & Papadopoulos, 2012), the DS avoidance is feasible
if the spacecraft initial attitude belongs in an appropriate range.
For the above desired path, the spacecraft initial attitude

0in0,θ = °ensures DS avoidance.
Fig. 12 shows the trajectories of the manipulator relative angles

and their corresponding rates. Fig. 13 shows the spacecraft angular
velocity and attitude resulting by the angular momentum con-
servation. Fig. 14 shows the uncontrolled gear reduction angular
positions and velocities and Fig. 15 shows the joint torques applied
by the motors so that the end- effector follows the desired path.
Finally, the motion of the end-effector and the corresponding
motion of the free-floating space manipulator is shown in Fig. 16.



Fig. 14. (a) Trajectories of gear reduction angles, (b) rates of gear reduction angles.
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As can be seen from Fig. 16, the applied controller achieves
accurate end-effector tracking although only the manipulator
configuration is controlled.
5. Conclusions

In this paper, we studied the dynamics of space manipulators,
considering that all flexibilities are lumped at the joints.Using the
Lagrange approach, the dynamic model was obtained where the
link and motor equations are dynamically coupled both through
the elastic torque at the joints and at the acceleration level. It was
Fig. 15. The motor torques required
shown that the structure of the dynamics of the flexible joint
space manipulators differs than the model structure of the ter-
restrial ones. The derived model structure gives new opportunities
in the design of trajectory following controllers. Therefore, ex-
ploiting the structure of the derived dynamic model, the system
can be linearized and decoupled via a static feedback linearization
controller whose computational effort is feasible in space appli-
cations. It was shown that the proposed controller can be applied
also in Cartesian space so that the end-effector follows a desired
path in the presence of joint flexibilities maintaining a desirable
non-oscillatory motion of the spacecraft. The application of the
method was illustrated by an example.
for following the desired path.



Fig. 16. Motion animation of the space manipulator motion.
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Appendix A

The inertia matrix D0
mθ in (9a) is given by

n nD R I z R I z A1N
0

m
0

m
m

m
m

m
0

m
m

m
m

1m 1 1
1

1
1

N N
N

N
N= [ ⋅ ⋅ ⋯ ⋅ ⋅ ] ( )θ

where ni is the gear ratio of motor i, Rm
0

i is the rotation matrix
between the motor i frame {mi} and the spacecraft frame {0}. The
matrix Im

m
i

i is the motor i inertia tensor relative to its principal
axes, expressed in the frame {mi} and the vector zm

m
i

i is the unit
vector in the direction of the motor i rotation axis, expressed in the
frame {mi}.

The inertia matrix Dq
0

mθ in (13b) is given below

n nD J I z J I z A2
T

N
T

q
0

,
0

m
0

m
0

,N
0

m
0

m
0

1 22 0 22 Nm 1 1 N
= [ ⋅ ⋅ ⋯ ⋅ ⋅ ] ( )θ

where Im
0

i is the motor i inertia tensor relative to its principal

axes, expressed in the frame {0} and the vector zm
0

i is the unit
vector in the direction of the motor i rotation axis, expressed in the
frame {0} and

⎡⎣ ⎤⎦J z z 0... A3,k
0

1
0

k
0

3 N k22 ≡ ( )( )× −

where zi
0 is the unit vector in the direction of the joint i rotation

axis, expressed in the frame {0}.
The inertia matrix D m mθ θ in (13c) is

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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n I

n I

n I

D

0 0

0 0

0

0 0 A4

m

m

N m

1
2

2
2

2

1

N

m m
2=

⋯

⋮

⋮ ⋮ ⋱
⋯ ( )

θ θ

where Im2 is the moment inertia of motor i relative to the motor i
rotation axis.
Appendix B

Here, the inertia type matrices and the column vector of cen-
trifugal and Coriolis forces presented in (27), for the planar 7-dof
manipulator shown in Fig. 4, are given.

The inertia type matrix D0 * is

D D D D B10
0

0
1

0
2

0* = * + * + * ( )
where

D d d d B2.10
0

00 10 20* = + + ( )* * *

D d d d B2.21
0

01 11 21* = + + ( )* * *

D d d d B2.32
0

02 12 22* = + + ( )* * *

and

d a B3.100 00= ( )* *

d a qcos B3.210 10 1= ( ) ( )* *

d a q qcos B3.320 20 1 2= ( + ) ( )* *

d a B3.411 11= ( )* *

d a qcos B3.521 21 2= ( ) ( )* *

where

a I m m m r m m m/ B4.100 0 0 1 2 0
2

0 1 2= + ( + ) ( + + ) ( )* * * * * * * * *

a m r l m m r m m m m/ B4.210 0 0 1 1 2 1 2 0 1 2= ( ( + ) + ) ( + + ) ( )* * * * * * * * * * *

a m m r l m m m/ B4.320 0 2 0 2 0 1 2= ( + + ) ( )* * * * * * * *

I m m l m m r m m m

m m l r m m m

/

/ B4.4

11 1 0 1 1
2

1 2 1
2

0 1 2

0 2 1 1
2

0 1 2

α = + ( + ) ( + + )

+ ( * + *) ( + + ) ( )

* * * * * * * * * * *

* * * * *

m l m r m l r m m m/ B4.521 2 2 1 1 0 1 1 0 1 2α = ( + ( + )) ( + + ) ( )* * * * * * * * * * *

I m m m l m m m/ B4.622 2 2 0 1 2
2

0 1 2α = + ( + ) ( + + ) ( )* * * * * * * * *

Note that the equivalent lengths li
*, ri

* as well as the equivalent

masses mi
* and the moment of inertia Ii* are computed using (3a)

and (3b), and (7a) and (7b), respectively, which for planar systems,
take the following form:

l
m

m m
l

B5.1
i

i

i m
i

i

=
+ ( )

*

r r
m

m m
l

B5.2
i i

m

i m
i

i

i

= +
+ ( )

*

and

I I I
m m

m m
l

B5.3
i i m

i m

i m
i
2

i
i

i
1= + +

+ ( )
*

+

The inertia type matrix D0
Θ is

⎡⎣ ⎤⎦D D D D n I n I B6m m
0

1
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2
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2
0
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The inertia type matrix D0
ΘΘ is
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⎢
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The terms dij
^ *

of the vector of centrifugal and Coriolis forces
given by (29a) and (29b) are
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d a qsin B8.101 10 1
^ = ( ) ( )

*
*

d a q qsin B8.202 20 1 2
^ = ( + ) ( )

*
*

d a qsin B8.312 21 2
^ = ( ) ( )

*
*

Appendix C

Here, the inertia type matrices Hqq
* , Hq mθ and H m mθ θ presented

in (24a), for the planar 7-dof manipulator shown in Fig. 4, are
given bellow:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

d d d

D D

D

d d
D D D

D

d d

D D D

D

d
D

D

H

2

C1

qq

11 12 22

1
0

2
0 2

0

12 22
2

0
1 2

0

0

12 22

2
0

1
0

2
0

0

22
2

20

0

=

+ +

−
( * + *)

*

+ −
*( + *)

*

+

−
*( * + *)

*

−
*
*

( )

*

* * * * *
*

* * *

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

D D n I

D
n I

D D n I

D

D n I

D

D n I

D

H

C2

m
m

m

m m
q

1
0

2
0

1

0 2
1

0
2

0
2

0

2
0

1

0
2

0
2

0

m

1
2

2

1 2

=
−

( * + *)
*

−
( * + *)

*

−
*

*
−

*

* ( )

θ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

n I
n I

D

n I n I

D

n I n I

D
n I

n I

D

H

C3

m
m m m

m m
m

m

1
2 1

2 2

0

1 2

0

1 2

0 2
2 2

2 2

0

m m

1
1 1 2

1 2
2

2

=
−

*
−

*

−
*

−
* ( )

θ θ

Appendix D

The terms hij in (33a) are given by

h I m l I m l r l

l l r q I m l r2 cos D1m m

11 1 1 1
2

2 2 1 1
2

2
2

2 1 1 2 1 1
2

2 2

= + + + (( + ) +
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2= + ( ( + ) ( ) + ) ( )

h I m l D322 2 2 2
2= + ( )
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