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Abstract
This paper focuses on the generation of dynamic models for
an electrohydraulic forestry machine. Such models can be
used for training simulators, for sizing components, and for
system design. The most complex model includes base
compliance, and pendulum-like motions of the processing
head suspended from an end-point. A Newton-Euler
iterative method, implemented symbolically, is used to
include base degrees-of-freedom due to the machine’s
compliant tires. Techniques and experiments designed to
extract system parameters are described. Based on the
obtained models, a valve-sizing methodology is briefly
outlined. Finally, simulation results of the machine’s
response are provided.

1 Introduction
Forestry is Canada’s most important industry in terms of
net contribution to its economy [1]. However, competition
from overseas and new environmental laws require that
forestry resources are harvested more efficiently and more
carefully than previously. This requires more sophisticated
forestry equipment that is appropriate to available forests,
and that allows for increased harvesting capacity with less
damage to the soil and the trees, and for selective logging.
At the same time, such equipment should be easier to
control and less tiring, so that operators can focus in
planning the local operation better.

Many of these requirements can be met by the addition
of an on-board information system that can be used for
assisting repetitive tasks, for diagnosing the state of the
machine, and most importantly, for controlling it. The
availability of cost-effective industrial grade computers, and
actuator-sensor mechatronic packages that can withstand the
harsh forestry environment, make such “computerization”
of forestry machines possible. In fact, some North-
American and Scandinavian forestry machines already

incorporate some of these systems. For example there exist
harvesters which also cut logs to pre specified lengths
using opto-electronic or mechanical measurements of log
length and diameter.

Many of the existing felling machines are modified
construction machines, usually large excavators. Typical
modifications include geometrical modifications for better
workspace utilization, and addition of specialized
processing heads, controlled from the cabin with separate
interfaces. Work on coordinated control of excavator-type of
machines has began in mid-eighties by P.D. Lawrence and
his team [2,3]. In this work, an excavator end-point is
controlled in cylindrical task space coordinates by an
operator rotating with the arm and using a single joystick.
However, an important trend in forestry equipment is
designing machines for the environment they work in.
Such machines should have the appropriate workspace size
and shape, be lightweight, be maneuverable, and agile. In
contrast to excavator machines, the operator of a machine
designed for forestry operations may be sitting in a non-
moving cabin, and commanding the manipulator in
Cartesian space. In addition, actuation systems for such
machines are being improved. For increased speed of
response, new systems are increasingly based on fast
closed-center proportional valves, and constant pressure
supplies.

This paper reports preliminary work focusing on the
modeling and control of an experimental forestry machine.
Detailed dynamical models at various degrees of
complexity are developed to help in designing effective
coordinated controllers in Cartesian space, and in
developing a training simulator for novice operators. A
Newton-Euler iterative method, implemented symbolically,
is used to include base degrees-of-freedom (dof) due to the
machine’s compliant tires. The models also include
pendulum-type motions of the suspended processing head.
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These models differ from standard dynamical models
developed in robotics primarily because some of the system
degrees-of-freedom are either not actuated, or affected by
passive spring-damper suspensions. Parameters for these
models were obtained from drawings, actual measurements,
simple experiments, and solid modeling techniques. As an
application of the developed dynamical models, a valve
sizing methodology is briefly outlined. Finally, the paper
concludes with simulation results of the response of the
system in manipulator commands.

2 Overview of the FERIC Experimental
Machine

The work described in this paper is part of a recent
Canadian initiative in forestry robotics, called ‘ATREF’
(Application des Technologies Robotiques aux
Équipements Forestiers). This is a four-year $2.2M project
which began in 1994, and involves industrial and
university partners [4]. For the needs of this project, one of
the partners, FERIC, has contributed a side-loading
forwarder, see Figure 1. This machine consists of an
articulated base that can adjust one degree-of-freedom (its
pitch) by means of a hydraulic piston. Due to a special base
articulation system, the two base bogies can move with
respect to each other, so as to minimize base pitch and roll.
The machine is equipped with an articulated manipulator
arm which includes a swing joint, actuated by a hydraulic
motor, and boom and stick joints, actuated by hydraulic
cylinders. At the stick end-point, a Hooke-type assembly
permits free swinging of the processing head in two dofs.

To improve operator visibility, machine stability, and
workspace, the original experimental machine, shown in
Figure 1, was modified by relocating the cabin and
manipulator. Manipulator structural modifications were
also necessary to increase the workspace area proximal to
the ground. Kinematic modeling of the arm and plotting of
its reachable workspace confirmed that lengthening of the
stick had the desired effect.

Figure 1. The FERIC Experimental Machine.
Indeed, as shown in Figure 2, the new workspace is

more flat and extended along a horizontal surface at its
lower end. With the eventual replacement of the grapple by
a specialized end-effector attachment, the machine will be
transformed from a side-loader to a wood-harvester [4].
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Figure 2. The reachable workspace of the
manipulator with (a) short stick, (b) long stick.

Traditional manipulation control in forestry and
construction machines is based on open-loop joint control,
i.e. the operator is controlling separately each joint of the
arm, and mentally coordinates the motion of the arm’s end-
effector in Cartesian space. Motion errors due to hardware
limitations are partly compensated by the operator,
depending on skill and experience. Computerized
coordinated control can reduce operator workload by
assigning the coordination task to an on-board computer.
However, compensation for errors requires responsive
actuation and control systems. While the original electro-
hydraulic system of the FERIC machine reflected
traditional industry practice, careful analysis suggested that
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the benefits of computerized control would be limited
without changes to certain electro-hydraulic components. In
particular, to improve responsiveness and joint
coordination, it was decided to replace the original load-
sensing actuation valves with proportional valves working
with a constant pressure supply. As a result, finer filters
were installed to address stricter oil filtering requirements.

For the purposes of control and identification experi-
ments, the machine was equipped with magnetostrictive
sensors (measuring cylinder displacement), resolvers
(measuring angles), inclinometers (measuring vehicle orien-
tation), and flow and pressure sensors for the hydraulics re-
lated experiments. These sensors also proved helpful in de-
bugging the hardware. More details about the machine
modifications and the on-board sensors can be found in
Reference [4].

3 Dynamic Modeling
In contrast to conventional industrial manipulators which
are mounted on fixed bases, a mobile manipulator is
mounted on a moving and compliant base. The non-fixed
base introduces additional system dofs. However, the dofs
associated with base compliance, are not actuated. These
characteristics introduce additional complexity to the
dynamic modelling and control of such systems.

In the study of system dynamics, we consider the forces
and/or torques required to cause motion of manipulator. A
number of methods are available to formulate manipulator
dynamics, including the iterative Newton-Euler dynamic
formulation, the Lagrangian formulation, Kane’s method,
and others. For the needs of this work, the iterative
Newton-Euler dynamic formulation was chosen because it
is easy to implement in the form of computer code, and it
requires a smaller number of computations [5,6]. In
general, in this method kinematic quantities are calculated
with outward computations starting from the base and
ending at the tip, while actuator forces and torques are
computed with inward computations. Gravity forces are
included by simply assuming that the base frame is
accelerated upwards with an acceleration equal to that of
gravity.

However, the iterative Newton-Euler algorithm was
developed for fixed-base systems in which all dofs are
actuated. In such case, known desired trajectories for all
joints, or dofs, are used to calculate numerically the forces
and torques necessary to cause the desired motion. This is
not possible in the case of a manipulator mounted on a
compliant base, since the base is not actuated, and its
position, velocity and acceleration will depend on how fast

the arm moves, the load being manipulated, etc. However,
if this formulation is applied symbolically, then it results
in a closed set of symbolic equations of motions, which is
not subject to this problem. This is the approach taken
here, and is explained in detail below.

The vehicle and all other sub-systems excluding the
manipulator, are modeled as a lumped mass, called
thereafter as the ‘base’, see Figure 3. The base may oscillate
around its home position, but it will not translate, i.e. the
wheels are assumed locked. A body fixed frame 0 is
attached to the base, that coincides with a world-fixed
frame when the vehicle is at its home position. The x̂0  axis
of the body-fixed frame is along the direction of forward
motion of the vehicle, while at home position, its ˆ z 0  axis
is in opposite direction to the gravity vector.

A force/torque set, (f, n), is applied to the base through
the tires and the ground. Here it is assumed that the soil
has been compacted, and that most of the base compliance
is due to the machine’s pneumatic tires. Therefore, these
forces depend on the state of the tires. The four tires of the
forestry vehicle are modeled as four parallel springs and
dampers. The simultaneous vertical motion of the springs
gives rise to a bouncing effect of the system. Due to the
parallel spring structure, the base is also subject to pitch
(rotation of the base around the ŷ0  axis) and roll (rotation
of the base around the x̂0  axis) motions. For small
deviations from the home position, the yaw effects are
negligible, and are therefore neglected. There are five links
in the manipulator namely (from base to tip) the swing,
boom, stick, pin and end-effector. The last two links are
not actuated but instead they are connected with free joints,
and hence a load attached to the last link swings like a
double pendulum (gimbals).
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ẑ0

x̂1

ŷ1
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Figure 3. The 8 dof system model, and
associated frames.
On all five links, frames are attached following the
modified Denavit-Hartenberg methodology as described in
[7], see Figure 3. Frame 0, i.e. the base frame ˆ ˆ ˆx y z0 0 0( ), is
attached at the center of mass of the base and has the same
orientation with the swing frame, when the angle of
rotation is zero. The rotation matrix that transforms vector
in the base frame to ones in the world frame is computed
based a zyx Euler angle succession and is given by
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where cz  is the cosine of qz  and sz  is the sine of qz , etc.
The angles qx , qy , and qz  are the roll, pitch and yaw
respectively. Since the yaw is neglected, qz  is set equal to
zero and this rotation matrix becomes,
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The position vectors are shown below
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where the symbol a c
bp  should be read as the position

vector of the point c with respect to frame b expressed in
frame a. The initial conditions for the iterative Newton-
Euler methodology are given below
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Applying velocity and acceleration propagation
equations, and assuming that yaw is zero, we obtain
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Only the vertical bounce effect is considered so,
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where the subscript ´ converts a vector to the corresponding
skew-symmetric cross-product matrix, m0  and 0

0
v̇c  are the

mass of the base and acceleration of the center of mass of
the base expressed in base frame, i.e. frame 0. The inertia
tensor of the ith link with respect to a frame located at the
center of mass of the ith link with same orientation of ith
frame is denoted by i

i
cI . The symbols i iF  and i

iN  denote
the force and moment acting at the center of mass of the ith
link expressed in the ith frame.

The complete algorithm for computing joint torques
from the motion of the joints is composed of two
iterations. During the forward iteration, link velocities and
accelerations are iteratively computed form link 1 to link 5
and the Newton-Euler equations are applied to each link.
During the backward iteration, constraint forces and
torques, and joint actuator torque are computed recursively
from link 5 to link 1. A more detailed description of this
part of the iterations can be found in [7]. The forces and
torques transmitted to the base by the manipulator can then
be found using the following equations
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where the symbols i
if  and i

in  denote the force and torque
exerted on link i  by link i-1, expressed in frame i . The
force and torque vectors at the center of mass of the base
( 0

0f  and 0 0n ) can be found out as a last component of the
inward iterations as shown in Eq. (11) and Eq. (12). This
forces and torque can be expressed in world frame as
follows

w wf R f0 0
0

0= (13)

w wn R n0 0
0

0= (14)

where w R0  can be found from Eq. (2). Introducing a
generalized force vector (F),
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Vector F can be equated with forces and torques
generated by the tires, as follows

F KX BX= - - ˙ (16)

where X and Ẋ  are generalized displacement and velocity
vectors with respect to world frame. K and B are the
stiffness and damping matrices and capture the effect of the
tire model. For simplicity, and for small motions, these
matrices are assumed to be diagonal

K diag k k k k k kx y z= ( ), , , , ,1 2 3 (17)

B diag b b b b b bx y z= ( ), , , , ,1 2 3 (18)

The symbols k kx y,  and kz  represent the total linear
stiffnesses along the corresponding directions, as denoted
by subscript with respect to the world frame. The term
‘total’ stiffness is used to represent the combined stiffness
of the four tires. The other parameters k k1 2,  and k3

represent the total angular stiffness namely roll, pitch and
yaw (rotation with respect to ˆ , ˆx yw w  and ẑw  as experienced
at the center of mass of the base). The same notation is
applied in case of damping. Since only three base motions
are considered important, i.e., bounce, roll and pitch, the
remaining base equations are dropped. When this is done,
the other two displacements are constant and the yaw angle
is zero.

Finally, the equations of motion are written as

Mq V q q G q˙̇ , ˙ ( )+ ( ) + = t (19)

where M is an 8́ 8 symmetric and positive definite mass
matrix, V contains the Coriolis and centrifugal terms, G
the gravity terms and t is the force/torque vector. A reduced
five dof order model is formed by neglecting base
compliance in the eight dof model. This model will be
used as the dynamics engine of a real-time training
simulator also undergoing development as part of the
ATREF project [8]. A further reduced model of three dofs,
formed by neglecting the Hooke-type gimbals, has been
used for the valve sizing studies, described in Section 5.

4 Parameter Estimation
Model parameters are needed to run the simulations,
validate the developed code, and design controllers.
Geometrical parameters such as lengths can be found from
blueprints, and verified by direct measurements. Some
masses are also found from drawings, or by directly
weighing the body of interest. But the parameters like

center of mass locations, and moments and products of
inertia, can not be obtained from drawings. In the case of
the boom and stick, pendulum experiments were carried out
to measure the moments of inertia of those links. In the
case of products of inertia no such experiments can be made
easily. For these, solid modeling techniques and the
Advanced Modeling Extension package of AutoCAD were
used. Another set of parameters was required to characterize
the base compliance due to the tires. The stiffness and
damping ratio of the tires are found by static load-
deflection tests and drop tests, respectively.

4a. Pendulum Experiments
Pendulum experiments are not always possible, because

they require disassembling a system to its components. In
this case, it was possible to do them while the machine
was disassembled for maintenance reasons. During a
pendulum experiment, a rigid body is first suspended from
a point, usually one of its joints. After the body comes to a
rest, it is angularly displaced with respect to some axis,
and then it is set free to swing. The period of the resulting
oscillation is recorded, and is subsequently used to
calculate the moment of inertia around the axis of rotation
according to the following equation

w p= =2

T

mgl

Izz
o (20)

where Izz
0  is the moment of inertia of the rigid body with

respect to the axis of swinging (generally denoted as a z-
axis), w is the natural frequency of the oscillation, T is the
period of oscillation, l  is the length from the point of
suspension to the center of mass of the body, and m is the
mass of the body. Rearranging the terms we get,

I
mglT

zz
0

2

24
=

p
(21)

Since the Newton-Euler formulation requires that the
moment of inertia is expressed with respect to the center of
mass of the body, the parallel axis theorem is employed as
follows

I I mlzz
c

zz
o= - 2 (22)

As revealed by Eq. (21), the inertia is proportional to
the square of the time period. Therefore, errors in obtaining
the period of oscillation may result in substantial errors in
calculating the moment of inertia. Moreover, swinging a
body with respect to a single axis is a difficult task. For
these reasons, pendulum experiments are not absolutely
satisfactory for obtaining moments of inertia. The accuracy
of these estimates can be improved by a combination of
experiments and solid modeling techniques.

4b. Solid Modeling
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Solid modeling techniques can be used in obtaining all
mass properties and center-of-mass positions, assuming
that the material and the geometry of a body or link are
precisely known. However, this is not always the case. To
match solid modeling estimates to measurements, links of
interest were weighted, and some moments of inertia were
calculated using pendulum experiments. Then, solid
models were refined to the point that both the estimated
and measured total mass and moment of inertia were in
agreement.
The basic concept in solid modeling requires that first a
closed boundary should be drawn around a two
dimensional surface, and then that this boundary is
extracted to a certain height with appropriate taper angles to
result in a solid body. To create body holes or cavities,
another body is created with the shape of the required hole
and it is subtracted from the original one. Once the solid
model is positioned and oriented with respect to a frame,
special routines calculate the body’s mass properties with
respect to this frame. The solid models generated for the
swing and the boom are shown in Figure 4.

Figure 4. Solid models generated in AutoCad.

Following the techniques described above, the inertia
parameters of the main links were obtained and are given in
Table I.

Table I. Link Inertia Properties.

in kgm2 Ixx Iyy Izz Ixy Iyz Izx

Swing 52 53 56 .01 .02 5
Boom 17 926 929 .36 -.09 -.70
Stick 16 816 826 32 .14 .51
Pin 0 3.3 3.3 0 0 0

End-eff. 0 1265 1265 0 0 0

4c. Load-deflection Experiment
To obtain the tire stiffness, k, load-deflection

experiments were conducted. In these, a load is applied on
a tire and its vertical deflection is measured. Figure 5
shows a typical plot obtained from such experiment. As
shown by this figure, the tire behaves like a linear spring in
the region of loads of interest. From the average slope of

the plot in Figure 5, the tire stiffness was computed as
equal to k = 49.23 kg/mm. This stiffness allows us to
calculate the translational and angular stiffness for bounce,
roll and pitch using geometrical expressions.

4d. Drop Experiment
One of the simplest methods to estimate the damping

ratio of a non-rolling tire is the so-called drop test. The
experimental procedure for standard automotive tires is
described in [9]. In the case of a light tire, a load is added
to the hub of the tire, which is just in contact with a steel
slab, without deforming it (the load is supported
externally). The load is then set free, and the loaded tire is
allowed to deform freely from its initial position.
Throughout the test, the tire must be in contact with the
slab, otherwise obtained results will not be valid due to the
physics of the collisions. An accelerometer mounted on its
hub records the tire transient response, which corresponds
to an underdamped oscillation. Figure 6 displays a typical
accelerometer reading during a drop experiment.
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Double integration of the acceleration data such as the
one displayed in Figure 6, yields the hub time response.
Then, using the amplitude of two successive periods of the
response, x1  and x2  and the logarithmic decrement equa-
tion, the damping ratio coefficient, z, is found according to

ln
x

x
1

2
2

2

1

æ
èç

ö
ø÷

=
-
pz

z
(23)

The value of the damping ratio from the experiment is
computed as 0.035. Based on this estimate, and on the
mass of the tire, the tire damping coefficient is calculated.
The damping coefficient for the pitch, roll, and bounce can
then be found easily [6].

5 Valve Sizing Based on Inverse Dynamics
An important application of the dynamic modeling is
sizing of actuators. In the case of the experimental
electrohydraulic machine, it has been decided not to replace
the existing boom and stick hydraulic cylinders and the
swing motor. However, the need to select new constant-
pressure proportional valves to replace the old load-sensing
ones provided the first application for the derived
dynamical models. According to typical industrial practice,
proportional valves are selected based on a nominal load
and duty cycle. However, no such nominal quantities exist
for a manipulator arm whose configuration changes
continuously, and may carry no load, or be loaded with a
heavy tree. Therefore, a systematic methodology for valve
sizing is needed.

A valve is properly sized when it can supply the
demanded flow at the required pressure drop across it.
Therefore to size a valve, flow and pressure requirements

must be obtained as a function of time for a given task.
Obviously, the task becomes more demanding when the
manipulator is moving a heavy payload, or when it
operates on a slope.

To this end, typical average as well as worst-case
trajectories of the manipulator end-point were specified by
observation of actual forestry machines. Using inverse
kinematics relationships, these end-point trajectories were
resolved at the actuator level, to result in trajectories for the
swing angle, and the boom and stick displacements. Then,
these can be used to obtain the flow requirements for all
three actuated dofs.

Assuming average piston areas, the flow through the
stick valve and cylinder is

Q A xstick s s= ˙ (24)

where As is the area of the stick cylinder, and ˙ x s  is the
velocity of the stick piston, a nonlinear function of the
corresponding joint velocity. Similarly, the flow through
the boom valve and cylinder is

Q A xboom b b= ˙ (25)

where Ab is the area of the boom cylinder, and ˙ x b  is the
velocity of the boom piston. Since the swing is driven by a
gear motor, the flow through the swing motor valve is

Qswing = D n ˙ q 1 (26)

where D is the motor displacement, n is the gear ratio from
the swing to swing motor, and ˙ q 1  is the angular velocity
of the manipulator swing.

To obtain the pressure drops through the three valves, a
reduced three dof dynamic model that includes the actuated
dofs (swing, boom, stick) was used. From this model and
the desired trajectories, the necessary forces at the two
cylinders, and the torque necessary to rotate the
manipulator were computed using inverse dynamics
equations in the form of Eq. (19). These forces and torques
are related to the pressure drops Dp at the cylinders and the
swing motor according to the following equations

Dp
f

Astick
stick

s

= (27)

Dp
f

Aboom
boom

b

= (28)

Dp
D nDswing motor

swing motor swing= =
t t

(29)

where fstick is the force applied by the stick cylinder, fboom is
the force applied by the boom cylinder, and tswing motor is
the torque applied by the hydraulic motor. Neglecting line
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pressure drops, the pressure drop at the valves is then given
by

D Dp p pv stick op stick, = - (30)

D Dp p pv boom op boom, = - (31)

D Dp p pv swing motor op swing motor, = - (32)

where pop  is the constant operating pressure of the
machine’s pumps. If necessary, these estimates can be
decreased by a 10% factor to allow for pressure drops in the
transmission lines. Equations (24-26) and (30-32) can be
used to plot valve flow versus valve drop for the desired
end-point trajectories. The resulting Q-Dp curve should lie
below the valve pressure-flow characteristic, Qv-Dpv,
typically a curve described by a relationship of the form,

Q c pv v= D (33)

If this is not the case, a valve of larger capacity must be
specified. Figure 7 shows typical plots of such curves for
the boom, stick, and swing, when the base is working on a
sloped terrain, i.e. the base is tilted with respect to the x̂0

axis by 20o (see Figure 3). Since all plots lie under the
valve characteristic, this valve can be used for driving all
manipulator actuators along the desired trajectory.

0

5 0

100

150

200

250

0 5 0 100 150 200 250

Valve Selection

F
lo

w
 (

lit
/m

in
)

Pressure Drop (bar)

Loaded
Tilted

Boom

Stick

Swing Motor

Valve
Characteristic

Figure 7. Valve sizing requires that boom,
stick and swing pressure-flow plots lie below
the valve characteristic.

Note that the dynamic models obtained permit also
either sizing of the system power supply (pumps) or
checking whether the desired trajectory can be followed
without exceeding the power capacity of the supply. The
total power requirement is the sum of all individual power
requirement for the powered joints. For example the power
required for stick is given by

P q f xstick stick stick s= =t ˙ ˙3 (34)

where t stick  is the torque required to move the stick at an
angular velocity of ̇q3 . Obviously, the total power required
for a given trajectory can be obtained by

Ptotal = Pswing + Pboom + Pstick + Plosses (35)

Based on the above equations, the total power, flow and
all other variables can be plotted against time to permit
easy evaluation of the system performance and
requirements.

6 Dynamic Response using Forward Dynamics
In this section the dynamic behavior of the eight dof
system is studied based on torque/force inputs generated by
a set-point feedforward controller. The focus here is to
analyze system transient and steady state response for
various commands. Also of interest is tracking performance
degradation due to tire compliance.

The controller is designed mainly to provide the gravity
terms required to hold the three manipulator joints in static
equilibrium at some desired configuration. This set of
gravity torques is computed off-line and added to the
feedback controller, shown in Figure 8. This controller is
basically a PD type controller with gravity compensation,
for improved tracking and for reducing the static errors.

As shown in Figure 8, the 3´1 gravity compensation
vector ˆ G  is evaluated at the 3´1 set-point vector ̂ q d, which
includes desired swing, boom, and stick angles. However,
ˆ G  is a function of all the dofs q, and therefore, nominal

roll, pitch, bounce and pendulum angle values are used.
Due to this approximate computation of the gravity term
ˆ G , it is expected that the steady-state error given by

Ess = ˆ q d - ˆ q ss (36)

will be small but not exactly zero, even if all system
parameters are exactly known.
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Figure 8. Set-point Feedforward Controller.

The elements of the diagonal control matrices K P , and
K V , shown in Figure 8, are computed by

k m mP i ii i iii
= =w pn2 22( ) i = 1,2,3 (37a)

kVi
= 2z iw i mii = 4pz in i mii i = 1,2,3 (37b)

where mii  corresponds to diagonal elements of the mass
matrix, z is the damping ratio, and n the frequency of the
controller. Finally, the equation for the applied torques is
given by,

t i = kPi
ei + kVi

˙ e i + t ffi
i = 1,2,3 (38)

where t ffi
 is the gravity compensation feedforward term.

Note that this controller is not applicable as such, since in
general, in a hydraulic system it is not possible to specify
actuator torques/forces. However, it can be used to evaluate
the developed models, and result in better understanding of
system behavior.

The simulations that follow are performed with the
initial values and gains given in Table II. The system is
commanded to move from a initial configuration to a final
one. The errors are approximately critically damped.
Additional details about the various parameters can be
found in [6].

Table II. Simulation Parameters.

Swing Boom Stick

Init. position, qi (
o) 0 0 0

Des. position, qd (o) 10 -10 -10

Damping, z 1 1 1

Frequency, n (Hz) .15 .34 .34

Position Gain (kp) 93997 564595 173207

Velocity Gain (kv) 199469 528577 162158

Figure 9 (a, b, and c) shows typical actuator applied
torques for a set-point command in the swing, boom, and
stick angles, ̂  q d. Note that these are smooth, and therefore
valid actuator torques. Figures 10 (a, b, and c) depict joint
tracking error performance. The observed overshoot occurs
because of dynamic coupling, and because the feedforward
gravity term is computed at the desired final position only.
Small non-zero steady state errors are due to the effects of
base compliance, and to the lack of compensation for it.
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Figure 9. Applied actuator torques.
Base pitch, roll and bounce due to base compliance are
depicted in Figures 10 (d, e and f). Although these are
relatively small, their effect at the end-point is not
negligible. This is due to the length of the manipulator
arm. Finally, the angle histories of the Hooke assembly are
shown in Figure 10 (g and h). As expected, since these
links are not actuated, their response is quite oscillatory.
However, eventually this oscillation dies out due to friction
at the joints.
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Figure 10. Transient response results.
On going work is focusing on refining the dynamic models
described here, from the point of view of fidelity to the
actual system. Also, the models will be incorporated in a
real-time training simulator, in which speed of response
will be traded-off with model detail and accuracy. In a
separate paper, work on modeling the electrohydraulic sub-
system, as well as on designing a coordinated controller
will be presented.

7 Conclusions
This paper studied issues related to the generation of
dynamic models for an electrohydraulic forestry machine.
Such models can be used for training simulators, for sizing
components, and for system design. The most complex
model, includes base compliance, manipulator swing,
boom, and stick dofs, and pendulum-like motions of the
processing head, suspended from the end-point. A
symbolic version of the Newton-Euler iterative method was

used to include the base dofs due to the compliant tires.
Techniques and experiments designed to extract system
parameters were described. Based on the obtained models, a
valve-sizing methodology was briefly outlined. Finally,
simulation results of the machine’s response were provided.
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